Tetrahedron 67 (2011) 6259-6274

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Stereoselective synthesis of dihydrothiadiazinoazines and dihydrothiadiazinoazoles and their pyrolytic desulfurization ring contraction

Alya Al-Etaibi^a, Elizabeth John^b, Maher R. Ibrahim^b, Nouria A. Al-Awadi^b, Yehia A. Ibrahim^{b,*}

^a Natural Science Department, College of Health Science, Public Authority for Applied Education and Training, Kuwait ^b Chemistry Department, Faculty of Science, Kuwait University, PO Box 5969, Safat 13060, Kuwait

ARTICLE INFO

Article history: Received 22 March 2011 Received in revised form 24 May 2011 Accepted 13 June 2011 Available online 17 June 2011

Keywords: Pyrolysis Stereoselective synthesis [1,2,4]Triazolo[3,4-b][1,3,4]thiadiazines [1,2,4]Triazino[3,4-b][1,3,4]thiadiazin-4ones [1,3,4]Thiadiazino[2,3-b]quinazolin-10-ones Pyrazolo[5,1-b][1,2,4]triazoles Pyrazolo[5,1-c][1,2,4]triazoles Pyrazolo[4,3-b]quinazolin-9-ones

ABSTRACT

Intramolecular base catalyzed C–C bond formation led to exclusive stereoselective syntheses of *trans*-6,7-dihydro-5*H*-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazines, *trans*-7,8-dihydro-6*H*-[1,2,4]triazino[3,4-*b*][1,3,4]thiadiazines isomerize slowly in CDCl₃ and more rapidly in DMSO-*d*₆ into the corresponding cis-stereoisomers. The other *trans*-6,7-dihydro-[1,3,4]thiadiazines isomerize also in DMSO-*d*₆ into the corresponding cis-stereoisomers. Pyrolytic conversion of these heterocyclic condensed dihydrothiadiazines into their corresponding pyrazolo[5,1-*b*][1,2,4]triazoles, pyrazolo[5,1-*c*][1,2,4]triazin-4-ones and pyrazolo[4,3-*b*]quinazolin-9-ones via desulfurization ring contraction is described.

© 2011 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Following our recent interest in the pyrolytic behavior of 1,2,4triazine derivatives¹ we serendipitously discovered the pyrolytic desulfurization ring contraction of [1,2,4]triazino[3,4-b][1,3,4] thiadiazin-4-ones into their corresponding pyrazolo[5,1-c][1,2,4] triazin-4-ones.² This desulfurization ring contraction reaction has also been accomplished by the action of acetic anhydride and was extended to the synthesis of other pyrazoloazines and pyrazoloazoles, thus offering a generalized synthetic approach toward pyrazoloazines and pyrazoloazoles with bridgehead (ring junction) nitrogen atom via ring contraction of condensed thiadiazines (Scheme 1).² Much attention has been directed to the synthesis of pyrazoloazines and pyrazoloazoles with bridgehead (ring junction) nitrogen atom due to their diverse interesting applications included in numerous publications and several hundreds of patents. These important applications include biological activity, hair-dyes, photographic dyes, and applications in material sciences. The available literature methods for their synthesis have been reviewed in Comprehensive Heterocyclic Chemistry (CHCIII, CHCII).^{3,4}

Scheme 1. Pyrolytic desulfurization ring contraction of thiadiazinoazines and thiadiazinoazoles.

The interesting synthesis of 6,7-dihydro-5*H*-[1,2,4]triazolo[3,4*b*][1,3,4]thiadiazines **4** via the base catalyzed C–C bond formation of the appropriate precursor acylmethylsulfanyl-*N*-arylideneamino-1,2,4-triazoles **3** (Scheme 2)^{5,6} prompted us to investigate the same methodology to synthesize other condensed dihydrothiadiazine derivatives and to study their applications in the synthesis of pyrazoloazines and pyrazoloazoles via pyrolytic desulfurization ring contraction.

2. Results and discussion

In the present work additional examples of 6,7-dihydro-5*H*-[1,2,4]triazolo[3,4-*b*]1,3,4]thiadiazines **4** have been successfully obtained by careful optimization of the reaction conditions. Thus, refluxing the 4-arylideneamino-1,2,4-triazole-3(2*H*)-thiones **2** (obtained from **1** and ArCHO) with ethyl bromoacetate or ω -

^{*} Corresponding author. Fax: +965 24816482; e-mail address: yehiaai@kuc01.kuniv.edu.kw (Y.A. Ibrahim).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.06.034

Scheme 2. Synthesis of 6,7-dihydro-5H-[1,2,4]triazolo[3,4-b]1,3,4]thiadiazines 4.

bromoacetophenones in ethanol in the presence of triethylamine afforded the corresponding diastereomerically pure trans-6,7dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines **4** via the base catalyzed C–C bond formation of the intermediate **3**. The stereochemistry of compounds 4 is indicated by X-ray crystallography (Fig. 1).⁷ Surprisingly, ¹H NMR of compounds **4** in CDCl₃ showed broad non-resolved signals for N-(5)H, C-(6)H, C-(7)H, which change positions with time into a well resolved doublet for the N-(5)H, a doublet for C-(7)H and a triplet for C-(6)H with a ${}^{3}J=4-6$ Hz (Fig. 2a and b shows the change with time of the ¹H NMR of **4a** in CDCl₃). This coupling constant is characteristic for the cis stereochemistry of compounds **4** as reported in literature.⁵ This indicates that the *trans*-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines isomerize in CDCl₃ into the corresponding *cis*-6,7-dihydro-5*H*-[1,2,4]triazolo[3,4b][1,3,4]thiadiazines. This isomerization is more rapid in DMSO- d_6 (Fig. 2c) and on addition of D₂O the NH signal disappeared and the signal at δ 5.08 appeared as doublet. Similar phenomenon has been reported for [1,2,4]triazolo[3,4-b]thiadiazinium bromides where the crystalline trans derivatives equilibrate to 60:40 mixtures of trans and cis isomers in CDCl₃ solution.^{5b}

Similar syntheses of the dihydrothiadiazino-1,2,4-triazine derivatives **8** had not yet been reported prior to this study. Therefore, the reaction of 4-arylideneamino-2,3-dihydro-3-thioxo-1,2-4-triazin-5(4*H*)-ones **6** (obtained from **5** and ArCHO) with ω -

Fig. 1. ORTEP drawing of compound 4a.⁷

bromoacetophenone derivatives or ethyl bromoacetate has been studied under different conditions and the best condition was achieved by stirring for 2 h in acetonitrile at room temperature in the presence of anhydrous K₂CO₃ (Scheme 3). Under these conditions compounds 6a-d, 6f-i, 6k gave the corresponding 8a-d, 6f-i, 6k, respectively, however, 6e,j gave the corresponding open intermediate 7e,j, respectively. The latter have been cyclized to the corresponding 8e,j upon refluxing for 30 min in ethanol in the presence of Et₃N. Other intermediates 7 (e.g., 7c,i) could be prepared in high yield by stirring the reactants for 30 min at room temperature in ethanol in the presence of Et₃N. The 7,8-dihydro-6H-[1,2,4]triazino [3,4-*b*][1,3,4]thiadiazin-4-ones **8** have been produced in the pure trans stereochemistry in solid state as confirmed by X-ray crystal $lography^7$ (Fig. 3) and also, as indicated by the ¹H NMR in CDCl₃, which showed a doublet for C-(7)H and a doublet for C-(8)H with a ${}^{3}J=8.8-9.2$ Hz. In contrast to the 6,7-dihydro-5H-[1,2,4]triazolo [3,4-b]1,3,4]thiadiazines 4, no trans, cis isomerization has been observed in this case in CDCl₃. However, in DMSO-d₆ such isomerization takes place immediately and only the cis isomers are detected as indicated by the coupling constant between C-(7)H and C-(8)H $(^{3}I=5.2-5.6$ Hz, Fig. 4), which become more clear upon D₂O addition.

An extension of this synthetic methodology to quinazolinothiadiazines was investigated. Thus, treatment of 3-benzylideneamino-1,2-dihydro-2-thioxoquinazolin-4-one 10 (obtained from 9 and PhCHO) with ω-bromoacetophenones in acetonitrile in the presence of Et₃N at room temperature for 2 h gave the corresponding 2benzoylmethylsulfanyl-3-benzylideneaminoquinazolin-4(3H)-one 11. Cyclization of the latter to 2-benzoyl-3-phenyl-3,4-dihydro-2H-[1,3,4]thiadiazino[2,3-b]quinazolin-10-one **12** has been achieved upon refluxing in ethanol in the presence of Et₃N for 30 min (Scheme 4). The latter has also been obtained stereoselectively in the trans form in the solid state similar to the 1,2,4-triazine derivatives as confirmed by X-ray crystallography⁷ (Fig. 5). ¹H NMR of **12** showed a doublet for C-(2)H and a doublet for C-(3)H with a ${}^{3}J=8.9$ Hz confirming their trans stereochemistry. Also, as in case of 8, no trans, cis isomerization has been observed for 12 in CDCl₃ but readily occurs in DMSO-*d*₆ (Fig. 6).

Attempted conversion of compounds **4** into the corresponding pyrazolo derivatives **13** under various conditions only gave identifiable products with compounds **4f**,**g**, upon pyrolysis at 230 °C for 30 min, yielding the corresponding pyrazolotriazole derivatives **13a,c**. Compounds **13** have also been successfully obtained by alternative route. Thus, reacting the appropriate triazoles **1a,c,h** with

Fig. 2. ¹H NMR of 4a in a: CDCl₃ immediately, b: CDCl₃ after 1 h, c: DMSO-d₆ and d: DMSO-d₆+D₂O.

Scheme 3. Synthesis of 7,8-dihydro-6H-[1,2,4]triazino[3,4-b]thiadiazin-4-ones 8.

ethyl α-bromoacetoacetate **14** in refluxing ethanol gave the corresponding pyrazolotriazoles **13a,c,h** (10–11%) and the triazolothiadiazines **15a,c,h** (40–48%). Pyrolysis of the latter at 230 °C for 45 min gave the corresponding pyrazolotriazoles **13a–c** in 10–44% yield. Similar condensation of compound **1a** with bromo-dibenzoylmethane **16** in refluxing ethanol gave directly the corresponding pyrazolotriazole **18** via the intermediate **17** (Scheme 5).

Pyrolysis of compounds **8a**–**j** at 230 °C for 45 min under 0.06 mbar afforded the corresponding pyrazolotriazines **19** together with the deacylated derivatives **20** (Scheme 6). Compounds

19 are thermally stable and were recovered completely unchanged when pyrolyzed under similar conditions. This indicates that compounds **19** are not the precursors of compounds **20**. Alternatively, compounds **19a** and **19j** have been readily obtained by heating the starting 4-amino-1,2,4-triazine derivatives **5a** with dibenzoylbromomethane and ethyl α -bromoacetoacetate, respectively, in ethanol following reported procedures.⁸

Moreover, compounds **20** were prepared by pyrolysis of the corresponding **24** at 230 °C as described previously.² The new derivatives **24** were synthesized from **5** as shown in Scheme 7 by

Fig. 3. ORTEP drawing of compound 8a.⁷

give the corresponding condensed thiadiazines, which then undergo sulfur extrusion as explained in previous paper.² On the other hand, the formation of the deacylated derivatives **20**, **27** from the same substrates probably follows different ring contraction routes including thioester intermediates **28** followed by thermal elimination of thioic acid derivatives as shown in Scheme 9. Similar thioesters thermal eliminations have been reported.⁹

3. Conclusions

The present study describes an interesting stereoselective synthesis of dihydro-1,3,4-thiadiazinoazines and dihydro-1,3,4thiadiazinoazoles by intramolecular base catalyzed C–C bond formation. Pyrolysis of these heterocyclic condensed dihydrothiadiazines offers synthetic routes toward pyrazoloazines and pyrazoloazoles with bridgehead (ring junction) nitrogen atom through desulfurization ring contraction. Many of these derivatives are expected to exhibit interesting diverse applications.

Fig. 4. ¹H NMR of compound 8a in a: CDCl₃ and b: DMSO-d₆.

reacting with bromoacetophenone derivatives **22** to yield the corresponding 3-arolylmethylsulfanyltriazines **23**, which were then cyclized to **24** upon refluxing in ethanol in the presence of *p*-toluenesulfonic acid. Heating **20** with acetic anhydride gave the corresponding acetyl derivatives **25**.

Similar pyrolysis of dihydrothiazoloquinazoline **12** at 230 °C under 0.06 mbar afforded the corresponding pyrazoloquinazoline derivatives **26a** and **27**. Condensation of **9** with each of dibenzoyl-bromomethane and ethyl α -bromoacetoacetate in refluxing ethanol gave the corresponding pyrazoloquinazolines **26a,b**, respectively (Scheme 8).

The formation of pyrazoloazines **13**, **19**, **26** in the pyrolysis products of **4**, **7**, **8**, and **12** can be explained as initial dehydrogenation to

4. Experimental

4.1. General

All melting points are uncorrected. IR spectra were recorded in KBr disks on a Perkin—Elmer System 2000 FT-IR spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker DPX 400, 400 MHz, Avance^{II} 600, 600 MHz super-conducting NMR spectrometers. Mass spectra were measured on GCMSDFS-Thermo and with LCMS using Agilent 1100 series LC/MSD with an API-ES/APCI ionization mode. Microanalyses were performed on LECO CH NS-932 Elemental Analyzer. The starting compounds **1**,¹⁰ **14**,¹¹ and **16**¹¹ were prepared as reported.

Scheme 4. Synthesis of 2-benzoyl-3-phenyl-3,4-dihydro-2H-[1,3,4]thiadiazino[2,3-b]quinazolin-10-one 12.

Fig. 5. ORTEP drawing of compound 12.7

4.2. Synthesis of *trans*-6,7-dihydro-5*H*-[1,2,4]triazolo[3,4-*b*] thiadiazines 4a–g: General procedure

A mixture of each of compounds **2a,c,e** (1 mmol), triethylamine (1.5 mmol), and the appropriate α -haloketones or ethyl bromoacetate (1 mmol) in ethanol (10 mL) was heated under reflux for 0.5 h. The solvent was then removed in vacuo and the remaining residue was crystallized from ethanol to give the corresponding products **4a**–**g**.

4.2.1. trans-7-Benzoyl-3,6-diphenyl-6,7-dihydro-5H-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazine 4a. Colorless crystals, yield 0.28 g (70%), mp 215 °C (lit.⁶ mp 204–206 °C). MS: *m*/*z*=398 (M⁺). IR: 3432, 3166, 3061, 3010, 2957, 1680, 1588, 1448, 1429, 1367, 1263, 1175, 1056, 942, 689, ¹H NMR (600 MHz, CDCl₃); δ 8.07 (dd, 2H, 17.9, 1.5). 7.97 (d, 2H, 17.3), 7.66 (t, 1H, 17.4), 7.51-7.48 (m, 4H), 7.42-7.39 (m, 3H), 7.34-7.30 (m, 3H), 6.68 (d, 1H, / 6.0), 5.49 (d, 1H, / 4.6), 5.14 (t, 1H, J 5.4). ¹³C NMR (150 MHz, CDCl₃): δ 195.0, 152.6, 142.9, 135.9, 134.6, 134.4, 130.1, 129.2, 129.1, 128.9, 128.8, 128.5, 127.9, 127.4, 125.9, 59.3, 42.0. ¹H NMR (400 MHz, DMSO- d_6): δ 8.07–8.04 (m, 4H), 7.72 (t, 1H, J 7.2), 7.59 (t, 2H, J 8.0), 7.51-7.47 (m, 5H), 7.37 (d, 1H, J 7.6, NH, exchangeable), 7.33-7.26 (m, 3H), 5.85 (d, 1H, J 6.1), 5.08 (t, 1H, J 6.6). ¹³C NMR (100 MHz, DMSO- d_6): δ 194.8, 152.0, 142.8, 137.0, 134.6, 134.5, 130.1, 129.3, 129.0, 128.8, 128.76, 128.4, 127.6, 127.5, 126.4, 58.9, 43.7. HRMS=398.1196 (C23H18N4OS requires 398.1196). Anal. Calcd for C23H18N4OS: C 69.33; H 4.55; N 14.06; S 8.05. Found: C 69.38; H 4.76; N 14.06; S 8.34.

4.2.2. trans-3,6-Diphenyl-7-p-methoxybenzoyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine **4b**. Colorless crystals, yield 0.27 g (62%), mp 233 °C. MS: *m*/*z*=428 (M⁺). IR: 3426, 3153, 2974, 2929, 1665, 1595, 1470, 1426, 1372, 1315, 1267, 1170, 1120, 1030, 955, 928, 689. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (dd, 2H, *J* 8.0, 2.0), 7.96 (d, 2H, *J* 8.8), 7.49 (d, 2H, *J* 7.0), 7.42–7.37 (m, 3H), 7.35–7.28 (m, 3H), 6.93 (d, 2H, *J* 8.8), 6.85 (d, 1H, *J* 5.6), 5.52 (d, 1H, *J* 4.4), 5.09 (t, 1H, *J* 5.6), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.7, 164.7, 152.7, 142.9, 136.0, 131.3, 130.0, 129.1, 128.7, 128.5, 127.9, 127.3, 127.2, 126.0, 114.4, 59.1, 55.7, 41.2. HRMS=428.1301 (C₂₄H₂₀N₄O₂S requires 428.1196). Anal. Calcd for C₂₄H₂₀N₄O₂S: C 67.27; H 4.70; N 13.07; S 7.48. Found: C 66.98; H 5.00; N 12.98; S 7.70.

4.2.3. trans-7-Benzoyl-3-p-chlorophenyl-6-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine **4c**. Colorless crystals, yield 0.35 g (80%), mp 163 °C. MS: m/z=432 (M⁺). LCMS: m/z=435 (M+3), 433 (M+1). IR: 3376, 3164, 3018, 2971, 2889, 2676, 1689, 1446, 1374, 1268, 1167, 1130, 1093, 948, 825, 691. ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, 2H, *J* 7.2), 7.98 (d, 2H, *J* 7.2), 7.70 (t, 1H, *J* 7.2), 7.55 (t, 2H, *J* 8.0), 7.45 (d, 2H, *J* 7.2), 7.39 (d, 2H, *J* 7.2), 7.34–7.31 (m, 3H), 6.60 (d, 1H, *J* 5.2), 5.41 (d, 1H, *J* 4.0), 5.19 (t, 1H, *J* 4.8). ¹³C NMR (100 MHz, CDCl₃): δ 195.0, 151.7, 143.2, 136.4, 135.6, 134.7, 134.3, 129.2, 129.1, 129.0, 128.9, 128.87, 128.8, 127.3, 124.2, 59.3, 41.7. HRMS=432.0806 (C₂₃H₁₇³⁵ClN₄OS requires 432.0806). Anal. Calcd for C₂₃H₁₇ClN₄OS: C 63.81; H 3.96; N 12.94; S 7.41. Found: C 63.58; H 4.28; N 12.84; S 7.66.

4.2.4. trans-3-p-Chlorophenyl-7-p-methoxybenzoyl-6-phenyl-6,7dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine **4d**. Colorless crystals, yield 0.13 g (51%), mp 233 °C. MS: *m*/*z*=462 (M⁺), LCMS: *m*/ *z*=465 (M+3), 463 (M+1). IR: 3427, 3146, 2986, 2927, 1666, 1596, 1456, 1431, 1270, 1170, 1025, 836. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, 2H, J 8.8), 7.96 (d, 2H, J 8.8), 7.46 (d, 2H, J 6.8), 7.37 (d, 2H, J 8.8),

Fig. 6. ¹H NMR of **12** in a: $CDCl_3$ and b: $DMSO-d_6$.

7.33–7.31 (m, 3H), 6.96 (d, 2H, *J* 8.8), 6.76 (d, 1H, *J* 5.6), 5.46 (d, 1H, *J* 4.4), 5.11 (t, 1H, *J* 5.2), 3.91 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 193.6, 164.8, 151.8, 143.1, 136.0, 135.8, 131.3, 129.1, 129.0, 128.8 (two overlapped carbons), 127.3, 127.1, 124.6, 114.4, 59.0, 55.7, 41.1. HRMS=462.0912 (C₂₄H₁₉³⁵ClN₄O₂S requires 462.0912).

4.2.5. trans-7-Benzoyl-6-p-chlorophenyl-3-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine **4e**. Colorless crystals, yield 0.2 g (46%), mp 229–230 °C. LCMS: m/z=435 (M+3), 433 (M+1). IR: 3161, 3058, 3003, 2974, 2950, 1684, 1594, 1493, 1449, 1423, 1355, 1281, 1265, 1092, 926, 689. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, 2H, *J* 7.2), 7.96 (d, 2H, *J* 7.6), 7.66 (t, 1H, *J* 7.4), 7.51–7.40 (m, 7H), 7.30 (d, 2H, *J* 7.6), 7.00 (br s, 1H), 5.58 (d, 1H, *J* 4.8), 5.06 (t, 1H, *J* 5.4). ¹³C NMR (100 MHz, CDCl₃): δ 195.0, 152.7, 142.1, 134.8, 134.7, 134.2, 134.1, 130.1, 129.3, 129.2, 128.8, 128.7, 128.6, 127.8, 125.9, 58.1, 41.1. HRMS=432.0806 (C₂₃H₁₇³⁵ClN₄OS requires 432.0806). Anal. Calcd for C₂₃H₁₇ClN₄OS: C 63.81; H 3.96; N 12.94; S 7.41. Found: C 63.59; H 4.27; N 12.86; S 7.70.

4.2.6. trans-7-Ethoxycarbonyl-3,6-diphenyl-6,7-dihydro-5H-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazine **4f**. Colorless crystals, yield 0.19 g (51%), mp 217 °C. MS: m/z=366 (M⁺). IR: 3447, 3146, 2982, 2956, 2931, 1738, 1457, 1430, 1258, 1165, 1130, 1004, 966, 771, 698. ¹H NMR (600 MHz, CDCl₃): δ 8.07–8.05 (m, 2H), 7.44–7.42 (m, 3H), 7.37–7.36 (m, 2H), 7.32–7.30 (m, 3H), 6.42 (d, 1H, J 5.4), 4.96 (t, 1H, J 4.8), 4.43 (d, 1H, J 4.2), 4.30–4.23 (m, 2H), 1.30 (t, 3H, J 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 152.5, 141.9, 134.6, 129.9, 129.0, 128.7, 128.4, 127.6, 126.8, 126.1, 62.7, 58.3, 40.6, 13.8. HRMS=366.1145 (C₁₉H₁₈N₄O₂S requires 366.1145). Anal. Calcd for C₁₉H₁₈N₄O₂S: C 62.28; H 4.95; N 15.29; S 8.75. Found: C 61.99; H 5.23; N 15.16; S 8.55.

4.2.7. trans-7-Ethoxycarbonyl-3-p-chlorophenyl-6-phenyl-6,7dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine **4g**. Colorless crystals, yield 0.22 g (55%), mp 170 °C. MS: m/z=402 (M+2, 32%), 400 (M⁺, 100%). IR: 3201, 3139, 2972, 2937, 1735, 1648, 1464, 1440, 1374, 1295, 1271, 1256, 1173, 1090, 1013, 975, 694. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, 2H, *J* 8.8), 7.39 (d, 2H, *J* 7.6), 7.32–7.26 (m, 5H), 6.46 (d, 1H, *J* 4.9), 4.95 (t, 1H, *J* 4.1), 4.44 (d, 1H, *J* 3.7), 4.29–4.25 (m, 2H), 1.30 (t, 3H, *J* 6.4). ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 151.6, 142.4, 136.1, 134.6, 129.1, 128.9, 128.8 (2 overlapped CH's), 126.9, 124.6, 62.9, 58.4, 40.6, 13.9. HRMS=400.1235 (C₁₉H₁₇³⁵ClN₄O₂S requires 400.1235). Anal. Calcd for C₁₉H₁₇³⁵ClN₄O₂S: C 56.93; H 4.27; N 13.98; S 8.00. Found: C 56.96; H 4.05; N 14.01; S 7.91.

4.3. General procedure for synthesis of compounds 6

A mixture of each of 5a-d (10 mmol), sodium acetate (12 mmol), and the appropriate aldehyde (10 mmol) in acetic acid (20 mL) was refluxed for the specified time. The reaction mixture was cooled and the solid obtained was filtered and crystallized from ethanol.

4.3.1. 4-Benzylideneamino-3-mercapto-6-phenyl-1,2,4-triazin-5(4H)-one **6a**. Reaction time: 1 h. Yellow crystals, yield 2.62 g (85%), mp 250 °C (lit.¹⁰ mp 250 °C). MS: m/z=308 (M⁺). ¹H NMR (400 MHz, CDCl₃): δ 10.51 (s, 1H), 8.52 (s, 1H, CH), 8.04 (dd, 2H, J 7.6, 1.2), 7.96 (dd, 2H, J 7.6, 1.6), 7.61 (t, 1H, J 7.6), 7.53 (d, 2H, J 7.6), 7.50–7.46 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.8, 170.7, 149.2, 144.9, 133.5, 131.4, 131.1, 130.9, 129.6, 129.1, 128.5, 128.4.

4.3.2. 4-Benzylideneamino-3-mercapto-6-p-methoxyphenyl-1,2,4triazin-5(4H)-one **6b**. Reaction time: 4 h. Yellow crystals, yield 2.2 g (65%), mp 227–228 °C. MS: m/z=338 (M⁺). IR: 3295, 3201, 3155, 3081, 3003, 2957, 1684, 1662, 1606, 1557, 1509, 1391, 1322, 1254, 1180, 1030, 835. ¹H NMR (400 MHz, CDCl₃): δ 10.43 (s, 1H), 8.51 (s, 1H, CH),

Scheme 5. Pyrolysis of dihydrotriazolo[3,4-b]thiadiazines 4 and 15.

8.06 (d, 2H, *J* 8.8), 7.96 (dd, 2H, *J* 7.8, 1.2), 7.60 (tt, 1H, *J* 7.2, 1.2), 7.52 (t, 2H, *J* 7.4), 6.97 (d, 2H, *J* 8.8), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.8, 170.4, 161.8, 149.3, 144.5, 133.4, 131.4, 130.0, 129.6, 129.0, 123.6, 113.9, 55.4. Anal. Calcd for C₁₇H₁₄N₄O₂S: C 60.34; H 4.17; N 16.56; S 9.48. Found: C 60.03; H 4.17; N 16.22; S 9.20.

4.3.3. 4-Benzylideneamino-3-mercapto-6-methyl-1,2,4-triazin-5(4H)-one **6c**. Reaction time: 1 h. Colorless crystals, yield 1.9 g (77%), mp 210 °C (lit.¹² mp 213–214 °C). MS: m/z=246 (M⁺). ¹H NMR (400 MHz, CDCl₃): δ 10.59 (s, 1H), 8.47 (s, 1H, CH), 7.93 (d, 2H, J 8.4), 7.59 (t, 1H, J 8.4), 7.51 (t, 2H, J 8.4), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.4, 171.4, 149.9, 147.4, 133.4, 131.3, 129.5, 129.0, 171.

4.3.4. 6-Benzyl-3-mercapto-4-p-methoxybenzylideneamino-1,2,4triazin-5(4H)-one **6d**. Reaction time: 3 h. Yellow crystals, yield 2.28 g (65%), mp 196 °C (lit.¹³ mp 196 °C). MS: m/z=352 (M⁺). ¹H NMR (400 MHz, DMSO- d_6): δ 13.81 (s, 1H), 8.52 (s, 1H, CH), 7.86 (d, 2H, J 8.8), 7.28–7.24 (m, 5H), 7.11 (d, 2H, J 8.8), 3.92 (s, 2H), 3.85 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 172.4, 170.7, 163.2, 149.6, 148.7, 136.3, 131.0, 129.2, 128.4, 126.6, 124.3, 114.7, 55.6, 35.9.

4.3.5. 3-Mercapto-4-*p*-methoxybenzylideneamino-6-phenyl-1,2,4triazin-5(4H)-one **6e**. Reaction time: 72 h. Yellow crystals, yield 2.54 g (75%), mp 245–246 °C. MS: m/z=338 (M⁺). IR: 3174, 3118, 3036, 2970, 1699, 1596, 1569, 1509, 1444, 1406, 1316, 1268, 1167, 1024, 838, 760. ¹H NMR (400 MHz, DMSO-d₆): δ 14.09 (s, 1H), 8.60 (s, 1H, CH), 7.96–7.93 (m, 2H), 7.89 (d, 2H, *J* 8.8), 7.50–7.47 (m, 3H), 7.14 (d, 2H, *J* 8.8), 3.88 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 172.7, 170.6, 163.4, 149.6, 144.9, 132.3, 131.2, 130.3, 128.4 (2C), 124.5, 114.9, 55.8. Anal. Calcd for $C_{17}H_{14}N_4O_2S$: C 60.34; H 4.17; N 16.56; S 9.48. Found: C 60.43; H 4.13; N 16.30; S 9.42.

4.3.6. 4-*p*-Chlorobenzylideneamino-3-mercapto-6-phenyl-1,2,4-triazin-5(4H)-one **6g**. Reaction time: 72 h. Colorless crystals, yield 2.1 g (60%), mp 240–241 °C. MS: m/z=344 (M+2, 11%), 342 (M⁺, 31%). IR: 3158, 3097, 3022, 2963, 1695, 1562, 1497, 1405, 1307, 1267, 1184, 1090, 833, 771, 691. ¹H NMR (400 MHz, DMSO-*d*₆): δ 14.20 (s, 1H), 8.76 (s, 1H, CH), 7.97 (d, 2H, *J* 8.4), 7.95–7.93 (m, 2H), 7.68 (d, 2H, *J* 8.4), 7.50–7.46 (m, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 172.3, 170.2, 149.2, 144.8, 138.0, 132.1, 130.7, 130.6, 130.1, 129.5, 128.3, 128.2. Anal. Calcd for C₁₆H₁₁ClN₄OS: C 56.06; H 3.23; N 16.34; S 9.35. Found: C 55.88; H 3.11; N 16.10; S 9.15.

4.3.7. 3-Mercapto-4-p-methoxybenzylideneamino-6-methyl-1,2,4triazin-5(4H)-one **6i**. Reaction time: 4 h. Colorless crystals, yield 2.34 g (85%), mp 196 °C (lit.¹⁴ mp 196 °C). MS: m/z=276 (M⁺). ¹H NMR (400 MHz, CDCl₃): δ 10.64 (s, 1H), 8.35 (s, 1H, CH), 7.88 (d, 2H, J 8.8), 6.99 (d, 2H, J 8.8), 3.89 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.6, 171.5, 163.8, 150.1, 147.4, 131.5, 124.0, 114.5, 55.6, 17.1.

4.4. General procedure for synthesis of compounds 7c,i

To a mixture of each of **6c,i** (1 mmol) and triethylamine (0.14 mL, 1 mmol), in absolute ethanol (10 mL) was added the appropriate ω -bromoacetophenone (0.2 g, 1 mmol). The mixture was stirred at room temperature for 30 min. The solvent was then removed in vacou and the remaining mixture was then washed with water and the precipitate formed was collected and crystallized from ethanol/CHCl₃.

Scheme 7. Synthesis and pyrolysis of [1,2,4]triazino[3,4-b]thiadiazines 24.

Scheme 8. Pyrolysis of thiadiazino[3,2-*b*]quinazoline 12.

Scheme 9. Possible mechanism for the formation of deacetylation products 20, 27.

4.4.1. 3-Benzoylmethylsulfanyl-4-benzylideneamino-6-methyl-1,2,4triazin-5(4H)-one **7c**. Colorless crystals, yield 0.29 g (80%), mp 178–180 °C. MS: m/z=364 (M⁺). IR: 3061, 2918, 1682, 1471, 1292, 1200, 751, 731, 688. ¹H NMR (400 MHz, CDCl₃): δ 9.49 (s, 1H, CH), 8.08 (d, 2H, J 7.6), 7.90 (d, 2H, J 7.6), 7.62 (t, 1H, J 7.6), 7.59 (t, 1H, J 7.6), 7.51 (t, 4H, J 7.6), 4.79 (s, 2H, CH₂), 2.49 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 193.1, 165.1, 157.9, 156.6, 150.6, 135.8, 133.8, 133.3, 132.3, 129.4, 129.1, 128.8, 128.6, 39.9, 17.6. HRMS=364.0988 (C₁₉H₁₆N₄O₂S requires 364.0988).

4.4.2. 3-Benzoylmethylsulfanyl-4-p-methoxybenzylideneamino-6methyl-1,2,4-triazin-5(4H)-one **7i**. Yellow crystals, yield 0.32 g (80%), mp 202–203 °C. MS: m/z=394 (M⁺). IR: 3079, 3046, 2972, 2931, 2916, 2886, 1685, 1667, 1599, 1573, 1478, 1422, 1378, 1307, 1262, 1173, 1130, 954, 841, 817, 752, 692. ¹H NMR (400 MHz, CDCl₃): δ 9.48 (s, 1H, CH), 8.07 (d, 2H, *J* 8.8), 7.91 (d, 2H, *J* 7.6), 7.60 (t, 1H, *J* 7.6), 7.52 (t, 2H, *J* 7.6), 6.98 (d, 2H, *J* 8.8), 4.78 (s, 2H, CH₂), 3.91 (s, 3H, OCH₃), 2.50 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 191.6, 165.2, 164.1, 158.1, 156.5, 150.6, 133.2, 132.2, 130.9, 129.4, 129.1, 128.7, 114.0, 55.6, 39.8, 17.6. HRMS=394.1094 (C₂₀H₁₈N₄O₃S requires 394.1094).

4.5. General procedure for synthesis of compounds 7e,j, 8a–d,f–i,k, 11

To a mixture of each of **6a**–**k**, 10 (1 mmol) and anhydrous potassium carbonate (2 mmol), in dry acetonitrile (10 mL) was added the appropriate α -haloketones (1 mmol). The mixture was stirred at room temperature for 2 h. The mixture was then diluted with water and the precipitate formed was collected and crystallized from ethanol/CHCl₃. 4.5.1. 3-Benzoylmethylsulfanyl-4-p-methoxybenzylideneamino-6phenyl-1,2,4-triazin-5(4H)-one **7e**. Yellow crystals, yield 0.45 g (99%), mp 211–212 °C. MS: m/z=456 (M⁺). IR: 2957, 2911, 1678, 1596, 1564, 1492, 1446, 1423, 1324, 1304, 1262, 1201, 1167, 1020, 982, 839, 785, 688, 641, 530. ¹H NMR (600 MHz, CDCl₃): δ 9.27 (s, 1H, CH), 8.20 (d, 2H, *J* 7.2), 8.11 (d, 2H, *J* 7.8), 7.90 (d, 2H, *J* 8.4), 7.65 (t, 1H, *J* 7.2), 7.53 (t, 2H, *J* 7.2), 7.48–7.47 (m, 3H), 7.03 (d, 2H, *J* 7.8), 4.92 (s, 2H, CH₂), 3.92 (s, 3H, OCH₃). ¹³C NMR (150 MHz, CDCl₃): δ 193.0, 166.2, 164.0, 158.1, 153.5, 149.8, 135.6, 133.9, 132.8, 131.5, 130.5, 128.9, 128.8, 128.6, 128.2, 124.6, 114.6, 55.6, 40.2. HRMS=456.1250 (C₂₅H₂₀N₄O₃S requires 456.1250).

4.5.2. 4-Benzylideneamino-3-ethoxycarbonylmethylsulfanyl-6phenyl-1,2,4-triazin-5(4H)-one **7j**. Yellow crystals from EtOH, yield 0.32 g (80%), mp 182–183 °C. MS: m/z=394 (M⁺). IR: 3070, 2981, 2929, 1743, 1684, 1502, 1455, 1431, 1310, 1175, 1028, 689. ¹H NMR (400 MHz, CDCl₃): δ 9.49 (s, 1H, CH), 8.20–8.17 (m, 2H), 7.90 (dd, 2H, *J* 8.0, 1.6), 7.60 (t, 1H, *J* 7.6), 7.52 (d, 2H, *J* 8.0), 7.50–7.45 (m, 3H), 4.27 (q, 2H, *J* 7.2), 4.10 (s, 2H, CH₂), 1.32 (t, 3H, *J* 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 165.8, 157.6, 153.9, 149.9, 133.4, 132.6, 132.2, 130.6, 129.4, 129.1, 128.9, 128.3, 62.2, 33.9, 14.2. HRMS=394.1094 (C₂₀H₁₈N₄O₃S requires 394.1094).

4.5.3. *trans-8-Benzoyl-3,7-diphenyl-7,8-dihydro-6H-[1,2,4]triazino* [*3,4-b]*[*1,3,4]thiadiazin-4-one* **8a**. Pale yellow crystals, yield 0.3 g (70%), mp 203–204 °C. MS: *m/z*=426 (M⁺). IR: 3209, 3066, 1676, 1515, 1450, 1323, 1300, 1182, 1116, 976, 768, 691. ¹H NMR (600 MHz, CDCl₃): δ 8.31 (dd, 2H, *J* 7.2, 1.8), 7.85 (d, 2H, *J* 7.2), 7.64 (t, 1H, *J* 7.2), 7.66–7.47 (m, 8H), 7.43–7.39 (m, 3H), 5.56 (d, 1H, *J* 8.8), 4.86 (d, 1H, *J* 8.8). ¹³C NMR (150 MHz, CDCl₃): δ 191.3, 151.4, 150.9, 148.0, 135.7,

134.7, 134.3, 132.7, 130.7, 129.9, 129.4, 129.2, 128.7, 128.6, 128.4, 127.9, 61.8, 52.2. ¹H NMR (400 MHz, DMSO- d_6): δ 8.21 (s, 1H, NH, exchangeable), 8.14–8.12 (m, 2H), 8.07 (d, 2H, *J* 7.2), 7.73 (t, 1H, *J* 7.2), 7.60 (t, 4H, *J* 8.0), 7.50–7.49 (m, 3H), 7.40 (t, 2H, *J* 7.2), 7.34 (t, 1H, *J* 7.2), 6.30 (d, 1H, *J* 5.4), 5.21 (br d, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 193.4, 152.1, 150.0, 148.0, 136.4, 134.8, 134.4, 133.2, 131.6, 130.5, 129.6, 129.2, 129.1, 128.6, 128.5, 127.7, 58.4, 51.6. HRMS=426.1144 (C₂₄H₁₈N₄O₂S requires 426.1144).

4.5.4. trans-8-Benzoyl-3-p-methoxyphenyl-7-phenyl-7,8-dihydro-6H-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4-one **8b**. Colorless crystals, yield 0.14 g (31%), mp 239–240 °C. MS: m/z=456 (M⁺). IR: 3208, 2916, 2846, 1671, 1598, 1509, 1454, 1325, 1300, 1261, 1222, 1178, 1109, 1022, 972, 849, 551. ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, 2H, J 8.8), 7.84 (d, 2H, J 8.0), 7.62 (t, 1H, J 7.6), 7.54 (dd, 2H, J 8.0, 2.0), 7.49–7.47 (m, 3H), 7.42–7.37 (m, 3H), 6.98 (d, 2H, J 8.8), 5.52 (d, 1H, J 8.8), 4.83 (d, 1H, J 8.8), 3.87 (s, 3H, OCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 161.7, 150.4, 150.3, 148.0, 135.8, 134.7, 134.3, 130.4, 129.8, 129.4, 129.2, 128.6, 127.9, 125.2, 113.8, 61.9, 55.4, 52.2. HRMS=456.1250 (C₂₅H₂₀N₄O₃S requires 456.1250).

4.5.5. trans-8-Benzoyl-3-methyl-7-phenyl-7,8-dihydro-6H-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4-one **8c**. Pale yellow crystals, yield 0.19 g (51%), mp 154–155 °C. MS: m/z=364 (M⁺). IR: 3251, 1669, 1594, 1529, 1463, 1378, 1303, 1214, 1172, 1111, 967, 807, 739, 692. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, 2H, J 8.8), 7.61 (t, 1H, J 7.2), 7.53–7.50 (m, 4H), 7.40–7.37 (m, 3H), 7.21 (s, 1H), 5.48 (d, 1H, J 8.8), 4.79 (d, 1H, J 8.8), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 154.2, 151.2, 148.7, 135.8, 134.6, 134.3, 129.8, 129.4, 129.2, 128.6, 127.9, 61.7, 52.0, 17.7. HRMS=364.0989 (C₁₉H₁₆N₄O₂S requires 364.0988).

4.5.6. trans-8-Benzoyl-3-benzyl-7-p-methoxyphenyl-7,8-dihydro-6H-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4-one **8d**. Colorless crystals, yield 0.26 g (58%), mp 156–157 °C. MS: m/z=470 (M⁺). IR: 3241, 3060, 1675, 1608, 1514, 1455, 1309, 1252, 1219, 1176, 1116, 1028, 977, 835, 816, 721, 689. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, 2H, *J* 7.6), 7.58 (t, 1H, *J* 7.6), 7.46–7.36 (m, 6H), 7.29 (t, 2H, *J* 7.2), 7.24–7.22 (m, 1H), 7.13 (s, 1H), 6.83 (d, 2H, *J* 8.8), 5.44 (d, 1H, *J* 8.8), 4.67 (d, 1H, *J* 8.8), 4.16 (s, 2H), 3.74 (s, 3H, OCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 160.4, 155.3, 151.7, 148.1, 136.1, 134.6, 134.3, 129.4, 129.2, 129.1, 128.6, 128.5, 127.2, 126.9, 114.6, 60.9, 55.3, 51.9, 37.7. HRMS=470.1407 (C₂₆H₂₂N₄O₃S requires 470.1407).

4.5.7. trans-8-p-Methoxybenzoyl-7-p-methoxyphenyl-3-phenyl-7,8dihydro-6H-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4-one **8f**. Colorless crystals, yield 0.46 g (94%), mp 242–243 °C. MS: m/ z=486 (M⁺). IR: 3237, 2933, 2837, 1668, 1598, 1513, 1322, 1259, 1173, 913, 744. ¹H NMR (600 MHz, CDCl₃): δ 8.32–8.30 (m, 2H), 7.84 (d, 2H, J 9.0), 7.50–7.44 (m, 6H), 6.95 (d, 2H, J 9.0), 6.91 (d, 2H, J 9.0), 5.48 (d, 1H, J 9.0), 4.78 (d, 1H, J 9.0), 3.89 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃). ¹³C NMR (150 MHz, CDCl₃): δ 189.8, 164.8, 160.5, 151.7, 150.7, 147.9, 132.8, 131.1, 130.6, 129.2, 128.6, 128.4, 127.5, 127.4, 114.7, 114.4, 61.2, 55.7, 55.3, 51.8. HRMS=486.1356 (C₂₆H₂₂N₄O₄S requires 486.1356).

4.5.8. trans-8-Benzoyl-7-p-chlorophenyl-3-phenyl-7,8-dihydro-6H-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4-one **8g**. Yellow crystals, yield 0.42 g (92%), mp 225–226 °C. MS: m/z=460 (M⁺, 100%), 462 (M+2, 42%). IR: 3241, 1693, 1660, 1595, 1508, 1464, 1328, 1297, 1252, 1182, 1155, 1094, 1063, 932, 789, 767, 690, 662. ¹H NMR (400 MHz, CDCl₃): δ 8.32–8.30 (m, 2H), 7.86 (d, 2H, J 7.6), 7.67 (t, 1H, J 7.6), 7.54–7.50 (m, 8H), 7.39 (d, 2H, J 7.2), 5.48 (d, 1H, J 9.0), 4.85 (d, 1H, J 9.0). ¹³C NMR (100 MHz, CDCl₃): δ 191.1, 151.1, 151.0, 147.9, 136.0, 134.9, 134.2, 134.1, 132.6, 130.7, 129.7, 129.32, 129.3, 128.7, 128.6, 128.4, 61.0, 52.1. HRMS=460.0754 ($C_{24}H_{17}^{35}CIN_4O_2S$ requires 460.0755).

4.5.9. trans-7-p-Chlorophenyl-8-p-methoxybenzoyl-3-phenyl-7,8dihydro-6H-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4-one **8h**. Colorless crystals, yield 0.4 g (82%), mp 255–256 °C. MS: m/ z=490 (M⁺, 100%), 492 (M+2, 41%). IR: 3232, 1663, 1598, 1571, 1513, 1463, 1418, 1319, 1296, 1261, 1223, 1171, 1111, 1013, 978, 827, 729. ¹H NMR (600 MHz, CDCl₃): δ 8.31–8.30 (m, 2H), 7.84 (d, 2H, J 7.2), 7.51–7.48 (m, 6H), 7.39 (d, 2H, J 8.4), 6.97 (d, 2H, J 9.0), 5.43 (d, 1H, J 9.0), 4.83 (d, 1H, J 9.0), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 189.4, 165.0, 151.3, 150.8, 147.9, 135.9, 134.2, 132.6, 131.1, 130.7, 129.6, 129.3, 128.7, 128.4, 127.1, 114.5, 61.0, 55.7, 51.8. HRMS=490.0860 (C₂₅H₁₉³⁵ClN₄O₃S requires 490.0860).

4.5.10. trans-8-Benzoyl-7-p-methoxyphenyl-3-methyl-7,8-dihydro-6H-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4-one **8i**. Pale yellow crystals, yield 0.21 g (54%), mp 201–202 °C. MS: m/z=394 (M⁺). IR: 3247, 3062, 3004, 2959, 2838, 1674, 1608, 1514, 1466, 1377, 1306, 1254, 1213, 1180, 1113, 1031, 910, 837, 814, 731. ¹H NMR (600 MHz, CDCl₃): δ 7.83 (dd, 2H, J 8.4, 1.2), 7.63 (tt, 1H, J 7.2, 1.2), 7.49 (t, 2H, J 7.8), 7.44 (d, 2H, J 9.0), 7.16 (s, 1H, NH), 6.91 (d, 2H, J 9.0), 5.46 (d, 1H, J 9.0), 4.75 (d, 1H, J 9.0), 3.68 (s, 3H), 2.65 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 191.6, 160.5, 154.1, 151.2, 148.7, 134.6, 134.4, 129.2, 129.15, 128.6, 127.5, 114.7, 61.2, 55.3, 51.9, 17.7. HRMS=394.1094 (C₂₀H₁₈N₄O₃S requires 394.1094).

4.5.11. trans-7-p-Chlorophenvl-4-oxo-3-phenvl-7.8-dihvdro-6H-[1.2.4]triazino[3.4-b][1.3.4]thiadiazine-8-carboxvlic acid ethvl ester 8k. Colorless crystals from EtOH, yield 0.086 g (20%), mp 227 °C. MS: *m*/*z*=428 (M⁺, 100%), 430 (M+2, 35%). IR: 3232, 2971, 1722, 1677, 1516, 1490, 1470, 1452, 1319, 1187, 1114, 1090, 1034, 864, 689. ¹H NMR (400 MHz, CDCl₃): δ 8.28–8.25 (m, 2H), 7.48–7.43 (m, 8H), 4.59 (d, 1H, J 9.2), 4.53 (d, 1H, J 9.2), 4.23-4.10 (m, 2H), 1.22 (t, 3H, J 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 151.3, 150.8, 147.8, 136.2, 133.4, 132.6, 130.7, 129.7, 129.2, 128.6, 128.4, 62.9, 61.3, 51.3, 13.9, ¹H NMR (400 MHz, DMSO- d_6): δ 8.44 (d, 1H, J 2.4, exchangeable), 8.12-8.09 (m, 2H), 7.52-7.46 (m, 7H), 5.30 (d, 1H, J 5.2), 5.15 (dd, 1H, J 5.2, 2.4), 4.19 (q, 2H, J 7.2), 1.19 (t, 3H, J 7.2). ¹³C NMR (100 MHz, DMSO-d₆): δ 168.0, 151.6, 149.7, 147.7, 134.6, 133.4, 132.9, 130.1, 129.3, 128.8, 128.2, 128.1, 62.3, 57.1, 49.5, 13.9. HRMS=428.0704 (C₂₀H₁₇³⁵ClN₄O₃S requires 428.0704). Anal. Calcd for C₂₀H₁₇ClN₄O₃S: C 56.01; H 4.00; N 13.06; S 7.48. Found: C 56.30; H 4.30; N 12.89; S 7.59.

4.5.12. 2-Benzoylmethylsulfanyl-3-benzylideneaminoquinazolin-4(3H)-one **11**. Colorless crystals from EtOH, yield 0.36 g (90%), mp 181–182 °C. MS: m/z=399 (M⁺). IR: 3060, 2921, 1677, 1605, 1580, 1551, 1469, 1452, 1318, 1291, 1273, 1204, 768, 755, 690. ¹H NMR (400 MHz, CDCl₃): δ 9.58 (s, 1H), 8.21 (dd, 1H, *J* 8.0, 1.2), 8.16–8.13 (m, 2H), 7.93 (dd, 2H, *J* 8.4, 1.6), 7.67–7.48 (m, 7H), 7.36 (dt, 1H, *J* 8.0, 1.2), 7.19 (dd, 1H, *J* 8.4, 0.8), 4.62 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 194.5, 162.5, 159.4, 156.9, 146.1, 136.8, 134.5, 133.5, 133.2, 132.3, 129.0, 128.9, 128.7, 128.5, 127.3, 126.0, 125.8, 120.3, 38.8. HRMS=399.1035 (C₂₃H₁₇N₃O₂S requires 399.1035).

4.6. Cyclization of 7e,j and 11: general procedure

A mixture of each of compounds **7e**, **j**, **11** (1 mmol), triethylamine (1.5 mmol) in ethanol (5 mL) was heated under reflux for 0.5 h. The solvent was then removed in vacuo and the remaining residue was crystallized from ethanol to give the corresponding products **8e j** and **12**, respectively.

4.6.1. trans-8-Benzoyl-7-p-methoxyphenyl-3-phenyl-7,8-dihydro-6H-[1,2,4]tiazino[3,4-b][1,3,4]thiadiazin-4-one **8e**. Yellow crystals, yield 0.23 g (50%), mp 196 °C. MS: m/z=456 (M⁺). IR: 3232, 2966, 2931, 2910, 1687, 1661, 1514, 1465, 1446, 1326, 1299, 1259, 1191, 1035, 931, 692. ¹H NMR (400 MHz, CDCl₃): δ 8.32–8.30 (m, 2H), 7.87 (d, 2H, *J* 7.2), 7.65 (t, 1H, *J* 7.2), 7.53–7.46 (m, 8H), 6.92 (d, 2H, *J* 8.8), 5.54 (d, 1H, *J* 8.8), 4.80 (d, 1H, *J* 8.8), 3.81 (s, 3H, OCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 160.5, 151.4, 150.8, 147.9, 134.7, 134.4, 132.7, 130.6, 129.2, 129.1, 128.7, 128.6, 128.4, 127.3, 114.7, 61.2, 55.3, 52.1. HRMS=456.1250 (C₂₅H₂₀N₄O₃S requires 456.1250).

4.6.2. trans-7-Phenyl-4-oxo-3-phenyl-7,8-dihydro-6H-[1,2,4]triazino [3,4-b][1,3,4]thiadiazine-8-carboxylic acid ethyl ester **8***j*. Colorless crystals, yield 0.19 g (50%), mp 132 °C. MS: m/z=394 (M⁺). IR: 3229, 3063, 2976, 1730, 1680, 1468, 1451, 1321, 1305, 1180, 1115, 751, 697. ¹H NMR (400 MHz, CDCl₃): δ 8.31–8.28 (m, 2H), 7.50–7.48 (m, 9H), 4.68 (d, 1H, *J* 9.2), 4.26 (d, 1H, *J* 9.2), 4.24–4.18 (m, 2H), 1.22 (t, 3H, *J* 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 151.5, 150.6, 147.8, 134.8, 132.6, 130.6, 130.1, 129.4, 128.6, 128.3, 127.8, 62.7, 62.0, 51.5, 13.8. HRMS=394.1094 (C₂₀H₁₈N₄O₃S requires 394.1094).

4.6.3. trans-2-Benzoyl-3-phenyl-3,4-dihydro-2H-[1,3,4]thiadiazino [2,3-b]quinazolin-10-one **12**. Colorless crystals, yield 0.28 g (71%), mp 210 °C. MS: m/z=399 (M⁺). IR: 3426, 3240, 1660, 1530, 1482, 1453, 1314, 1302, 1201, 1176, 1105, 770, 692. ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d, 1H, *J* 8.0), 7.82 (d, 2H, *J* 7.2), 7.74 (dt, 1H, *J* 8.4, 1.6), 7.62–7.53 (m, 4H), 7.48–7.44 (m, 3H), 7.42–7.36 (m, 4H), 5.52 (d, 1H, *J* 8.9), 4.86 (d, 1H, *J* 8.9). ¹³C NMR (150 MHz, CDCl₃): δ 192.2, 157.6, 149.0, 146.6, 136.9, 134.7, 134.4, 134.3, 129.5, 129.3, 129.0, 128.6, 127.8, 126.8, 126.7, 126.3, 118.9, 62.7, 53.1. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.07 (d, 1H, *J* 7.6), 8.03 (d, 2H, *J* 7.2), 7.79 (t, 1H, *J* 7.2), 7.72 (t, 1H, *J* 7.2), 7.65–7.56 (m, 6H), 7.48 (t, 1H, *J* 7.2), 7.39 (t, 2H, *J* 8.0), 7.33 (t, 1H, *J* 7.2), 6.20 (d, 1H, *J* 6.0), 4.09 (dd, 1H, *J* 6.0, 2.8). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 193.5, 156.9, 149.9, 145.9, 136.8, 134.5, 134.4, 134.3, 129.2, 128.8, 128.7, 128.6, 127.8, 126.2, 126.1, 126.07, 118.5, 59.5, 51.8. HRMS=399.1035 (C₂₃H₁₇N₃O₂S requires 399.1035).

4.7. Procedures for synthesis of 13, 15, 18, 19, 20, 26, and 27: general procedure

(A) The substrate (1 mmol) was introduced in the reaction tube, cooled in liquid nitrogen, sealed under vacuum (0.06 mbar), and placed in the pyrolyzer at 230 °C (static pyrolyzer) for 45 min. After cooling, the contents of the tube were purified using column chromatograph.

(B) A mixture of each of compound **1a,c,h**, **9**, **5a** (1 mmol) and each of compounds **14**, **16** (1 mmol) in EtOH (10 mL) was refluxed for 3 h. The solvent was removed in vacuo and the products were purified by column chromatography.

4.7.1. 3,6-Diphenyl-7-ethoxycarbonyl-1H-pyrazolo[5,1-c][1,2,4]triazole **13a.** Colorless crystals from EtOH, yield 0.03 g (10%, using general procedure A, from **15a**), 0.12 g (36%, using general procedure A, from **4f**), 0.03 g (10%, using general procedure **B**, from **1a** and **14**), R_{f} =0.6 (petroleum ether/EtOAc 2:1). MS: m/z=332 (M⁺). IR: 2922, 2852, 1709, 1654, 1616, 1459, 1178, 1093, 908, 734, 697. ¹H NMR (400 MHz, CDCl₃): δ 10.41 (s, 1H), 8.51 (dd, 2H, *J* 8.0, 2.0), 7.98–7.95 (m, 2H), 7.58–7.45 (m, 6H), 4.33 (q, 2H, *J* 7.2), 1.35 (t, 3H, *J* 7.2). ¹³C NMR (150 MHz, CDCl₃): δ 162.6, 161.2, 149.8, 140.7, 132.4, 130.8, 129.7, 129.3, 129.0, 127.9, 126.9, 125.1, 87.3, 60.2, 14.6. HRMS=332.1266 (C₁₉H₁₆N₄O₂ requires 332.1267).

4.7.2. 3-*p*-Chlorophenyl-7-Ethoxycarbonyl-6-phenyl-1H-pyrazolo [5,1-*c*][1,2,4]triazole **13c**. Red crystals from EtOH, yield 0.16 g (44%, using general procedure A, from **15c**), 0.037 g (10%, using general procedure A, from **4g**), 0.04 g (11%, using general procedure **B**, from **1c** and **14**), mp 259 °C. LCMS: *m*/*z*=369 (M+3), 367 (M+1). IR: 3226, 3179, 1640, 1619, 1441, 1326, 1176, 1087, 1011, 693. ¹H NMR

(400 MHz, CDCl₃): δ 10.64 (s, 1H), 8.48 (d, 2H, *J* 8.8), 7.98–7.96 (m, 2H), 7.55 (d, 2H, *J* 8.4), 7.50–7.49 (m, 3H), 4.36 (q, 2H, *J* 7.2), 1.36 (t, 3H, *J* 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 162.6, 161.3, 149.7, 139.8, 136.9, 132.2, 129.7, 129.4, 129.3, 128.1, 127.9, 123.5, 87.5, 60.3, 14.5. HRMS=366.1266 ($C_{19}H_{15}^{35}$ ClN₄O₂ requires 366.1267).

4.7.3. 7-*Ethoxycarbonyl-6-phenyl-1H-pyrazolo*[5,1-*c*][1,2,4]*triazole* **13h**. Colorless oil from column chromatography, yield 0.06 g (25%, using general procedure A, from **15h**), 0.026 g (10%, using general procedure **B**, from **1h** and **14**), R_{f} =0.6 (petroleum ether/EtOAc 2:1). MS: m/z=257 (M⁺). IR: 3018, 2926, 2854, 1710, 1616, 1462, 1216, 1189, 758. ¹H NMR (400 MHz, CDCl₃): δ 10.23 (s, 1H), 8.38 (s, 1H), 7.93–7.91 (m, 2H), 7.49–7.46 (m, 3H), 4.34 (q, 2H, J 7.2), 1.35 (t, 3H, J 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 162.5, 161.5, 148.6, 141.7, 132.1, 129.6, 129.4, 127.9, 87.4, 60.3, 14.5. HRMS=256.0954 (C₁₃H₁₂N₄O₂ requires 256.0954).

4.7.4. 3,6-Diphenyl-7-ethoxycarbonyl-7H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazine **15a**. Yellow crystals from EtOH, yield 0.16 g (45%, using general procedure B, from **1a** and **14**), mp 133–134 °C. R_{f} =0.3 (petroleum ether/EtOAc 1:1). MS: m/z=364 (M⁺). IR: 3063, 2981, 2937, 1735, 1462, 1369, 1308, 1278, 1229, 1179, 1021, 758, 692. ¹H NMR (600 MHz, CDCl₃): δ 8.10–8.09 (m, 2H), 7.91 (dd, 2H, *J* 7.2, 1.2), 7.58 (tt, 1H, *J* 7.8, 1.2), 7.54 (d, 2H, *J* 7.8), 7.53–7.51 (m, 3H), 4.97 (s, 1H), 4.21–4.13 (m, 2H), 1.16 (t, 3H, *J* 7.2). ¹³C NMR (150 MHz, CDCl₃): δ 165.7, 152.6, 151.1, 138.5, 133.5, 132.2, 130.4, 129.3, 128.6, 128.5, 127.3, 125.9, 63.6, 38.3, 13.8. MS: 364. HRMS=364.0988 (C₁₉H₁₆N₄O₂S requires 364.0988).

4.7.5. 3-*p*-Chlorophenyl-7-ethoxycarbonyl-6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine **15c**. Colorless crystals, yield 0.16 g (40%, using general procedure B, from **1c** and **14**), mp 215 °C. MS: *m*/ *z*=398 (M⁺, 100%), 400 (M+2, 42%). IR: 3064, 2982, 1735, 1453, 1275, 1230, 1178, 1092, 1014, 834, 754. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, 2H, *J* 8.2), 7.93 (d, 2H, *J* 7.6), 7.63 (t, 1H, *J* 7.6), 7.57 (t, 2H, *J* 7.6), 7.51 (d, 2H, *J* 8.2), 5.00 (s, 1H), 4.24–4.16 (m, 2H), 1.19 (t, 3H, *J* 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 151.5, 151.4, 138.7, 136.6, 133.3, 132.4, 129.6, 129.3, 128.9, 127.3, 124.2, 63.6, 38.1, 13.7. HRMS=398.1196 (C₁₉H₁₅³⁵ClN₄O₂S requires 398.1196).

4.7.6. 7-*Ethoxycarbonyl-6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazine* **15h**. Colorless oil, yield 0.14 g (48%, using general procedure B, from **1h** and **14**), R_{f} =0.2 (petroleum ether/EtOAc 1:1). MS: *m*/*z*=288 (M⁺). IR: 3132, 3063, 2986, 2934, 1736, 1480, 1450, 1365, 1296, 1268, 1218, 1179, 1021, 755, 690. ¹H NMR (400 MHz, CDCl₃): δ 8.65 (s, 1H), 7.89 (dd, 2H, *J* 6.8, 1.6), 7.61–7.51 (m, 3H), 4.92 (s, 1H), 4.23–4.11 (m, 2H), 1.17 (t, 3H, *J* 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 151.2, 142.5, 137.3, 133.2, 132.4, 129.3, 127.2, 63.6, 39.4, 13.7. HRMS=288.0674 (C₁₃H₁₂N₄O₂S requires 288.0675).

4.7.7. 7-*Benzoyl*-6-*phenyl*-1*H*-*pyrazolo*[5,1-*c*][1,2,4]*triazole* **18.** Colorless crystals from EtOH, yield 0.03 g (12%, using general procedure A, from **17**), mp 195 °C. R_f =0.2 (petroleum ether/EtOAc 2:1). MS: *m*/*z*=288.1 (M⁺). IR: 3143, 3122, 3063, 2925, 2876, 2857, 1614, 1591, 1567, 1459, 1432, 1205, 979, 926, 739, 697. ¹H NMR (400 MHz, CDCl₃): δ 12.80 (s, 1H), 8.43 (s, 1H), 7.53 (dd, 2H, *J* 8.0, 1.2), 7.35–7.30 (m, 3H), 7.23 (tt, 1H, *J* 7.2, 1.6), 7.15 (2t overlapped, 4H, *J* 7.2, 7.6). ¹³C NMR (100 MHz, CDCl₃): δ 189.4, 161.4, 149.3, 138.0, 132.3, 131.4, 129.4, 129.1, 128.8, 128.6, 127.7, 127.6, 97.9. HRMS=288.1006 (C₁₇H₁₂N₄O requires 288.1005).

4.7.8. 8-Benzoyl-3,7-diphenyl-1H-pyrazolo[5,1-*c*][1,2,4]triazin-4-one **19a**. Pale yellow crystals, yield 31% (using general procedure A, from **8a**), 30% (using general procedure B, from **5a** and **16**), mp 278–279 °C. *R*_{*f*}=0.7 (petroleum ether/EtOAc/DCM 2:1:1). MS: *m*/ *z*=392 (M⁺). IR: 2918, 2849, 1705, 1582, 1501, 1445, 1422, 1262, 1198, 1155, 1017, 930, 905, 769, 740, 691. ¹H NMR (400 MHz, CDCl₃): δ 12.14 (s, 1H, NH), 8.21–8.18 (m, 2H), 7.53–7.52 (m, 3H), 7.44 (dd, 2H, *J* 8.4, 1.2), 7.37–7.32 (m, 3H), 7.25 (t, 1H, *J* 7.2), 7.16–7.11 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 157.1, 148.1, 146.9, 141.9, 137.4, 132.2, 131.8, 130.7, 130.4, 129.9, 129.5, 128.9, 128.8, 128.6, 128.0, 127.9, 102.5. HRMS=392.1267 (C₂₄H₁₆N₄O₂ requires 392.1267).

4.7.9. 8-Benzoyl-3-methyl-7-phenyl-1H-pyrazolo[5,1-c][1,2,4]triazin-4-one **19c**. Colorless crystals, yield 17% (using general procedure A, from **8c**), mp 238 °C. R_f =0.4 (petroleum ether/EtOAc/DCM 2:1:1). MS: m/z=330 (M⁺). IR: 3239, 3061, 3008, 1709, 1600, 1550, 1486, 1449, 1425, 1324, 1201, 1152, 927, 743, 697. ¹H NMR (400 MHz, CDCl₃): δ 11.75 (s, 1H, NH), 7.41 (dd, 2H, J 8.8, 1.6), 7.35–7.32 (m, 3H), 7.26 (t, 1H, J 7.2), 7.16–7.11 (m, 4H), 2.6 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 157.1, 148.9, 147.6, 143.8, 137.4, 132.1, 130.7, 129.9, 129.4, 128.9, 128.0, 127.8, 102.1, 16.9. HRMS=330.1114 (C₁₉H₁₄N₄O₂ requires 330.1111).

4.7.10. 8-Benzoyl-7-p-methoxyphenyl-3-phenyl-1H-pyrazolo[5,1-c] [1,2,4]triazin-4-one **19e**. Yellow crystals, yield 51% (using general procedure A, from 8e), mp 251–252 °C. R_{f} =0.5 (petroleum ether/EtOAc/DCM 2:1:1). MS: m/z=422 (M⁺). IR: 3199, 3058, 2930, 2834, 1710, 1679, 1605, 1515, 1442, 1251, 1175, 1025, 932, 694. ¹H NMR (400 MHz, CDCl₃): δ 12.49 (s, 1H, NH), 8.20–8.18 (m, 2H), 7.52–7.50 (m, 5H), 7.36 (t, 1H, *J* 7.2), 7.30 (d, 2H, *J* 6.8), 7.16 (t, 2H, *J* 7.6), 6.64 (d, 2H, *J* 8.8), 3.75 (s, 3H, OCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 191.5, 160.6, 156.8, 148.1, 146.9, 141.7, 137.3, 132.3, 131.9, 131.4, 130.3, 129.2, 128.8, 128.5, 127.9, 123.0, 113.5, 102.3, 55.3. HRMS=422.1373 (C₂₅H₁₈N₄O₃ requires 422.1373).

4.7.11. 8-*p*-Methoxybenzoyl-7-*p*-methoxyphenyl-3-*p*henyl-1*H*-*py*razolo[5,1-*c*][1,2,4]triazin-4-one **19***f*. Yellow crystals, yield 57% (using general procedure A, from **8***f*), mp 264–265 °C. R_f =0.4 (petroleum ether/EtOAc/DCM 2:1:1). MS: *m*/*z*=452 (M⁺). IR: 3223, 1706, 1595, 1513, 1433, 1358, 1255, 1172, 1025, 779. ¹H NMR (400 MHz, CDCl₃): δ 12.13 (s, 1H, NH), 8.20–8.18 (m, 2H), 7.54–7.50 (m, 5H), 7.40 (d, 2H, *J* 8.8), 6.73 (d, 2H, *J* 8.8), 6.66 (d, 2H, *J* 8.8), 3.78 (s, 3H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 189.9, 163.1, 160.7, 156.6, 148.2, 146.8, 141.4, 132.0, 131.7, 131.5, 130.3, 129.9, 128.8, 128.5, 123.3, 113.6, 113.3, 102.3, 55.5, 55.3. HRMS=452.1479 (C₂₆H₂₀N₄O₄ requires 452.1479).

4.7.12. 8-Benzoyl-7-p-chlorophenyl-3-phenyl-1H-pyrazolo[5,1-c] [1,2,4]triazin-4-one **19**g. Yellow crystals, yield 34% (using general procedure A, from **8**g), mp 310–311 °C. R_{f} =0.7 (petroleum ether/ EtOAc/DCM 2:1:1). MS: m/z=428 (M+2, 28%), 426 (M⁺, 85%). IR: 3242, 1713, 1617, 1591, 1509, 1422, 1363, 1269, 1201, 933, 748, 693. ¹H NMR (400 MHz, CDCl₃): δ 12.08 (s, 1H, NH), 8.20–8.18 (m, 2H), 7.54–7.52 (m, 3H), 7.44 (d, 2H, *J* 7.2), 7.41 (t, 1H, *J* 7.6), 7.30 (d, 2H, *J* 8.4), 7.19 (t, 2H, *J* 8.0), 7.12 (d, 2H, *J* 8.4). ¹³C NMR (100 MHz, CDCl₃): δ 191.0, 155.7, 147.8, 146.7, 141.8, 137.1, 135.6, 132.3, 131.5, 131.0, 130.3, 129.1, 128.7, 128.6, 128.4, 128.1, 127.9, 102.2. HRMS=426.0878 (C₂₄H₁₅³⁵ClN₄O₂ requires 426.0878).

4.7.13. 7-*p*-*Chlorophenyl*-8-*p*-*methoxybenzoyl*-3-*phenyl*-1*H*-*pyrazolo*[5,1-*c*][1,2,4]*triazin*-4-*one* **19h**. Yellow crystals, yield 30% (using general procedure A, from **8h**), mp 257 °C. R_{f} =0.5 (petroleum ether/EtOAc/DCM 2:1:1). MS: *m*/*z*=458 (M+2, 25%), 455 (M⁺, 60%). IR: 2920, 2850, 1705, 1595, 1510, 1433, 1258, 1210, 1168, 907, 757, 733. ¹H NMR (400 MHz, CDCl₃): δ 12.28 (s, 1H, NH), 8.19–8.17 (m, 2H), 7.53–7.51 (m, 3H), 7.48 (d, 2H, *J* 8.8), 7.38 (d, 2H, *J* 8.4), 7.18 (d, 2H, *J* 8.4), 6.65 (d, 2H, *J* 8.8), 3.78 (s, 3H, OCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 189.5, 163.3, 155.6, 148.1, 146.7, 141.4, 135.8, 131.8, 131.7, 131.2, 130.4, 129.6, 129.5, 128.8, 128.5, 128.4, 113.4, 102.4, 55.5. HRMS=456.0984 (C₂₅H₁₇³⁵ClN₄O₃ requires 456.0983).

4.7.14. 8-Benzoyl-7-p-methoxyphenyl-3-methyl-1H-pyrazolo[5,1-c] [1,2,4]triazin-4-one **19i**. Colorless crystals, yield 10% (using general

procedure A, from **8i**), mp 226–227 °C. R_{f} =0.2 (petroleum ether/ EtOAc/DCM 2:1:1). MS: m/z=360 (M⁺). IR: 3236, 3159, 3063, 3005, 1708, 1606, 1550, 1432, 1252, 1176, 1029, 928, 751. ¹H NMR (400 MHz, CDCl₃): δ 11.74 (s, 1H, NH), 7.42 (dd, 2H, *J* 8.4, 1.2), 7.35 (t, 1H, *J* 7.2), 7.27 (d, 2H, *J* 8.8), 7.15 (t, 2H, *J* 7.8), 6.64 (d, 2H, *J* 8.8), 3.75 (s, 3H), 2.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 191.5, 160.6, 156.8, 148.9, 147.6, 143.7, 137.5, 132.1, 131.4, 128.9, 127.9, 123.0, 113.5, 101.9, 55.3, 16.9. HRMS=360.1216 (C₂₀H₁₆N₄O₃ requires 360.1216).

4.7.15. 3,7-Diphenyl-8-ethoxycarbonyl-1H-pyrazolo[5,1-c][1,2,4]triazin-4-one **19***j*. Colorless crystals from EtOH, yield 25% (using general procedure A, from **7***j*), 30% (using general procedure B, from **5a**), mp 250–251 °C. MS: m/z=360 (M⁺). IR: 3425, 3249, 2979, 2924, 1713, 1656, 1609, 1515, 1484, 1442, 1278, 1186, 1083, 769, 696. ¹H NMR (400 MHz, CDCl₃): δ 11.47 (s, 1H, NH), 8.16–8.13 (m, 2H), 7.89 (dd, 2H, *J* 7.2, 1.2), 7.51–7.47 (m, 6H), 4.40 (q, 2H, *J* 7.2), 1.34 (t, 3H, *J* 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 162.9, 157.0, 148.1, 146.1, 140.7, 131.7, 130.5, 130.3, 130.1, 130.0, 128.8, 128.5, 127.8, 93.7, 61.3, 14.2. HRMS=360.1217 (C₂₀H₁₆N₄O₃ requires 360.1216).

4.7.16. 3,7-Diphenyl-1H-pyrazolo[5,1-c][1,2,4]triazin-4-one **20a**. Gray needles from DMF, yield 0.029 g (10%, using general procedure A, from **7**j), 0.246 g (73%, using general procedure A, from **24a**), mp 398–400 °C. MS: m/z=288 (M⁺, 100%), 259 (10%), 103 (40%). IR: 3031, 1549, 1421, 1378, 1347, 1165, 1069, 1023, 837, 745, 687. ¹H NMR (600 MHz, DMSO- d_6): δ 14.28 (br, 1H, NH), 8.09 (dd, 2H, *J* 8.4, 1.6), 8.04 (dd, 2H, *J* 8.4, 1.6), 7.53–7.45 (m, 6H), 6.85 (s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ 155.2, 149.0, 144.0, 135.5, 133.4, 131.6, 129.6, 128.9, 128.7, 128.3, 128.1, 126.6, 84.4. Anal. calcd for C₁₇H₁₂N₄O: C 70.82; H 4.20; N 19.43. Found: C 70.80; H 4.16; N 19.40.

4.7.17. 3-*p*-*Methoxyphenyl*-7-*phenyl*-1*H*-*pyrazolo*[5,1-*c*][1,2,4]*tri-azin*-4-*one* **20b**. Gray plates from DMF, yield 0.17 g (53%, using general procedure A, from **24b**), mp 384–386 °C. MS: *m*/*z*=318 (M⁺). IR: 3437, 3199, 3061, 2922, 1678, 1606, 1458, 1297, 1096, 928, 869, 696. ¹H NMR (400 MHz, DMSO-*d*₆): δ 14.16 (br, 1H, NH), 8.08 (d, 2H, *J* 7.8), 8.00 (d, 2H, *J* 8.8), 7.54–7.48 (m, 3H), 7.06 (d, 2H, *J* 8.8), 6.81 (s, 1H), 3.83 (s, 3H, OCH₃). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 160.2, 155.6, 149.5, 144.5, 135.7, 132.1, 130.2, 130.1, 129.4, 127.1, 126.2, 114.0, 84.6, 55.7. Anal. calcd for C₁₈H₁₄N₄O₂: C 67.92; H 4.43; N 17.60. Found: C 67.88; H 4.41; N 17.48.

4.7.18. 3-Methyl-7-phenyl-1H-pyrazolo[5,1-c][1,2,4]triazin-4-one **20c**. Brown crystals from DMF, yield 0.05 g (22%, using general procedure A, from **8c**), 0.21 g (93%, using general procedure A, from **24c**), mp 350 °C (lit.² mp 350 °C).

4.7.19. 7-*p*-*Methoxyphenyl*-3-*phenyl*-1*H*-*pyrazolo*[5,1-*c*][1,2,4]*tri-azin*-4-*one* **20***e*. Yellow plates from DMF, yield 0.086 g (27%, using general procedure A, from **8***e*), yield 0.13 g (41%, using general procedure A, from **24***e*), mp 360–362 °C. MS: *m*/*z*=318 (M⁺, 100%). IR: 3203, 3011, 2911, 1673, 1605, 1449, 1251, 1178, 1026, 950, 836, 783. ¹H NMR (600 MHz, DMSO-*d*₆): δ 14.21 (br, 1H, NH), 8.09–7.99 (m, 4H), 7.48–7.44 (m, 3H), 7.06 (d, 2H, *J* 8.4), 6.76 (s, 1H), 3.83 (s, 3H, OCH₃). ¹³C NMR (150 MHz, CDCl₃): δ 160.4, 155.1, 148.9, 143.9, 135.4, 133.4, 128.7, 128.3, 128.1, 128.0, 124.1, 114.2, 83.8, 55.2. Anal. calcd for C₁₈H₁₄N₄O₂: C 67.92; H 4.43; N 17.60. Found: C 67.88; H 4.41; N 17.50.

4.7.20. 7-*p*-Chlorophenyl-3-phenyl-1H-pyrazolo[5,1-c][1,2,4]triazin-4-one **20g**. Greenish yellow plates from DMF, yield 0.032 g (10%, using general procedure A, from **8g**), yield 0.145 g (45%, using general procedure A, from **8h**), 0.24 g (75%, using general procedure A, from **24g**), mp 420–422 °C. MS: m/z=322 (M⁺, 100%), 324 (M+2, 15%). IR: 3432, 3206, 3070, 1681, 1606, 1446, 1293, 1093, 950, 842, 787. ¹H NMR (600 MHz, DMSO-*d*₆): δ 14.21 (br, 1H, NH), 8.10 (d, 2H, *J* 7.8), 8.03 (d, 2H, *J* 8.0), 7.57 (d, 2H, *J* 8.0), 7.48 (t, 2H, *J* 7.8), 7.45 (t, 1H, *J* 7.6), 6.87 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 160.2, 153.9, 148.9, 143.7, 135.6, 134.2, 130.6, 128.9, 128.7, 128.3, 128.2, 128.1, 84.7. Anal. calcd for C₁₇H₁₁ClN₄O: C 63.26; H 3.44; N, 17.36. Found: C 63.20; H 3.44; N 17.30.

4.7.21. 3-Methyl-7-p-methoxyphenyl-1H-pyrazolo[5,1-c][1,2,4]triazin-4-one **20i**. Brown crystals from DMF, yield 0.07 g (27%, using general procedure A, from **8i**), 0.136 g (53%, using general procedure A, from **24e**), mp 326 °C (lit.² mp 326 °C).

4.7.22. 7-*p*-*Chlorophenyl*-3-*p*-*methoxyphenyl*-1*H*-*pyrazolo*[5,1-*c*] [1,2,4]*triazin*-4-*one* **20k**. Gray plates from DMF, yield 0.24 g (68%, using general procedure A, from **24k**), mp 394–396 °C. MS: *m*/ *z*=352 (M⁺, 100%), 354 (M+2, 30%). IR: 3437, 3199, 3061, 2922, 1678, 1606, 1458, 1297, 1096, 928, 869, 696. ¹H NMR (400 MHz, DMSO-*d*₆): δ 14.18 (br, 1H, NH), 8.10 (d, 2H, *J* 8.6), 7.99 (d, 2H, *J* 8.6), 7.58 (d, 2H, *J* 8.6), 7.06 (d, 2H, *J* 8.6), 6.85 (s, 1H), 3.83 (s, 3H, OCH₃). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 162.3, 153.5, 148.8, 143.2, 135.6, 134.0, 130.6, 128.9, 128.6, 128.9, 128.3, 113.5, 84.7, 55.2. Anal. calcd for C₁₈H₁₃ClN₄O₂: C 61.28; H 3.71; N 15.88. Found: C 61.18; H 3.57; N 15.68.

4.7.23. 3,7-*Di*-*p*-*methoxyphenyl*-1*H*-*pyrazolo*[5,1-*c*][1,2,4]triazin-4one **20I**. Gray plates from DMF, yield 0.21 g (60%, using general procedure A, from **24I**), mp 388–390 °C. MS: *m*/*z*=348 (M⁺, 100%). IR: 3437, 3199, 3061, 2922, 1678, 1606, 1458, 1297, 1096, 928, 869, 696. ¹H NMR (400 MHz, DMSO-*d*₆): δ 14.15 (br, 1H, NH), 8.10 (d, 2H, *J* 8.4), 7.99 (d, 2H, *J* 8.4), 7.07 (d, 2H, *J* 8.4), 7.05 (d, 2H, *J* 8.4), 6.73 (s, 1H), 3.84 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 162.1, 152.9, 148.6, 143.2, 135.6, 134.5, 130.1, 128.9, 128.5, 128.9, 114.1, 113.7, 84.4, 55.18, 55.23. Anal. calcd for C₁₉H₁₆N₄O₃: C 65.51; H 4.63; N 16.08. Found: C 65.50; H 3.45; N 16.10.

4.7.24. 3-*p*-Chlorophenyl-7-phenyl-1H-pyrazolo[5,1-*c*][1,2,4]triazin-4-one **20m**. Gray plates from DMF, yield 0.25 g (78%, using general procedure A, from **24m**), mp 394–396 °C. MS: m/z=322 (M⁺, 100%), 324 (M+2, 30%). IR: 3437, 3199, 3061, 2922, 1678, 1606, 1458, 1297, 1096, 928, 869, 696. ¹H NMR (400 MHz, DMSO-*d*₆): δ 14.35 (br, 1H, NH), 8.09 (d, 2H, *J* 7.8), 8.06 (d, 2H, *J* 8.4), 7.57 (d, 2H, *J* 8.4), 7.52–7.46 (m, 3H), 6.87 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 156.3, 150.0, 145.1, 135.2, 134.5, 133.4, 132.6, 130.9, 130.7, 129.9, 129.2, 127.7, 85.7. Anal. calcd for C₁₇H₁₁ClN₄O: C 63.26; H 3.44; N 17.36. Found: C 63.18; H 3.41; N 17.38.

4.7.25. 3,7-*Di*-*p*-chlorophenyl-1H-pyrazolo[5,1-*c*][1,2,4]triazin-4-one **20n**. Gray plates from DMF, yield 0.25 g (70%, using general procedure A, from **24n**), mp above 420 °C. MS: m/z=356 (M⁺, 100%), 358 (M+2, 55%), 360 (M+4, 10%). IR: 3437, 3199, 3061, 2922, 1678, 1606, 1458, 1297, 1096, 928, 869, 696. ¹H NMR (600 MHz, DMSO- d_6): δ 14.34 (br, 1H, NH), 8.09 (d, 2H, *J* 8.2), 8.07 (d, 2H, *J* 8.0), 7.57 (d, 2H, *J* 8.2), 7.50 (d, 2H, *J* 8.0), 6.86 (s, 1H). ¹³C NMR (150 MHz, DMSO- d_6): δ 156.3, 150.0, 145.1, 135.2, 134.5, 133.4, 132.6, 130.9, 130.7, 129.9, 129.0, 128.3, 85.7. Anal. calcd for C₁₇H₁₀Cl₂N₄O: C 57.16; H 2.82; N 15.68. Found: C 57.05; H 2.81; N 15.80.

4.7.26. 3-*p*-*Chlorophenyl*-7-*p*-*methoxyphenyl*-1*H*-*pyrazolo*[5,1-*c*] [1,2,4]*triazin*-4-*one* **200**. Gray plates from DMF, yield 0.24 g (68%, using general procedure A, from **240**), mp 394–396 °C. MS: *m*/*z*=352 (M⁺, 100%), 354 (M+2, 10%). IR: 3427, 3200, 3014, 2936, 1680, 1610, 1456, 1255, 1080, 1032, 839, 786. ¹H NMR (400 MHz, DMSO-*d*₆): δ 14.29 (br, 1H, NH), 8.08 (d, 2H, *J* 8.8), 8.02 (d, 2H, *J* 8.8), 7.57 (d, 2H, *J* 8.8), 7.02 (d, 2H, *J* 8.8), 6.78 (s, 1H), 3.83 (s, 3H, OCH₃).

 13 C NMR (150 MHz, DMSO- d_6): δ 156.3, 150.0, 145.8, 135.2, 134.5, 133.4, 132.6, 130.9, 130.7, 129.9, 129.2, 127.7, 85.7, 55.2. Anal. calcd for C1₈H₁₃ClN₄O₂: C 61.28; H 3.71; N 15.88. Found: C 61.18; H 3.51; N 15.68.

4.8. Synthesis of compounds 23. General procedure

A mixture of the appropriate **5** (1 mmol), α -bromoacetophenone derivatives **22** (1 mmol), and anhydrous K₂CO₃ (2 mmol) in dry acetonitrile (10 mL) was stirred at room temperature for 2 h. The solvent was removed in vacuo and ice water (50 mL) was added to the reaction mixture, filtered, and washed several times with water. The product was collected and crystallized from the proper solvent.

4.8.1. 4-Amino-3-(2-oxo-2-phenylethylsulfanyl)-6-phenyl-4H-[1,2,4] triazin-5-one **23a**. Colorless crystals from ethanol, yield 0.25 g (74%), mp 210–212 °C (lit.¹⁵ mp 209–210). MS: m/z=338 (M⁺, 15%). ¹H NMR (600 MHz, DMSO- d_6): δ 8.10 (dd, 2H, J 7.8, 1.6), 8.06 (dd, 2H, J 7.8, 1.6), 7.71 (t, 1H, J 7.8), 7.59 (t, 2H, J 7.8), 7.49–7.44 (m, 3H), 6.18 (br, 2H, NH₂), 4.88 (s, 2H). ¹³C NMR (150 MHz, DMSO- d_6) δ 193.0, 161.4, 151.9, 151.0, 135.8, 133.6, 132.9, 130.0, 128.8, 128.3, 128.2, 128.0, 39.0.

4.8.2. 4 - Amino - 6 - p - methoxyphenyl - 3 - (2 - oxo - 2 - phenylethylsulfanyl)-4H-[1,2,4]triazin-5-one**23b**. Yellow crystals from ethanol, yield 0.3 g (81%), mp 213–215 °C. MS: <math>m/z=368 (M⁺, 10%). IR: 3434, 276, 2919, 1698, 1661, 1604, 1494, 1439, 1310, 1294, 1253, 1179, 1073, 991, 841. ¹H NMR (600 MHz, DMSO- d_6): δ 8.12 (d, 2H, *J* 8.8), 8.12–8.07 (m, 2H), 7.71 (t, 1H, *J* 7.6), 7.59 (t, 2H, *J* 7.8), 7.02 (d, 2H, *J* 8.8), 6.17 (br, 2H, NH₂), 4.87 (s, 2H), 3.81 (s, 3H, CH₃). ¹³C NMR (150 MHz, DMSO- d_6): δ 193.5, 161.3, 161.0, 152.5, 150.9, 136.3, 134.1, 130.3, 129.3, 128.8, 125.7, 114.1, 55.7, 39.3. Anal. calcd for C₁₈H₁₆N₄O₃S: C 58.68; H 4.38, N 15.21; S 8.70. Found: C 58.60; H 4.17; N 15.14; S 8.61.

4.8.3. 4-*Amino*-3-(2-*p*-*methoxyphenyl*-2-*oxo*-*ethylsulfanyl*)-6*phenyl*-4*H*-[1,2,4]*triazin*-5-*one* **23e**. White crystals from ethanol, yield 0.27 g (73%), mp 160–162 °C. MS: *m*/*z*=368 (M⁺, 100%). IR: 3432, 3103, 2895, 1665, 1605, 1499, 1456, 1313, 1262, 1179, 1025, 825, 760. ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.10 (dd, 2H, *J* 7.9, 1.6), 8.05 (d, 2H, *J* 8.8), 7.69 (t, 1H, *J* 7.8), 7.49 (t, 2H, *J* 7.8), 7.44 (d, 2H, *J* 8.8), 6.18 (br, 2H), 4.88 (s, 2H), 3.83 (s, 3H, CH₃). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 192.2, 160.8, 160.3, 151.9, 150.4, 138.4, 134.6, 130.3, 129.7, 128.9, 127.8, 113.7, 55.2, 39.2. Anal. calcd for C₁₈H₁₆N₄O₃S: C 58.68; H 4.38; N 15.21; S 8.70. Found: C 58.64; H 4.40; N 15.07; S 8.48.

4.8.4. 4-Amino-3-(2-p-chlorophenyl-2-oxo-ethylsulfanyl)-6-phenyl-4H-[1,2,4]triazin-5-ones **23g**. Yellow crystals from ethanol, yield 0.28 g (75%), mp 196–198 °C. MS: m/z=374 (M+2, 5%), 372 (M⁺, 15%). IR: 3443, 3280, 2916, 1697, 1666, 1589, 1499, 1360, 1291, 1206, 1094, 994, 794. ¹H NMR (400 MHz, DMSO- d_6): δ 8.11 (d, 2H, J 7.8), 8.05 (dd, 2H, J 7.8, 1.8), 7.67 (d, 2H, J 7.8), 7.50–7.45 (m, 3H), 6.19 (br, 2H, NH₂), 4.87 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 192.8, 161.8, 152.4, 151.6, 139.0, 135.2, 133.4, 130.7, 130.5, 129.4, 128.7, 128.6, 39.2. Anal. calcd for C₁₇H₁₃ClN₄O₂S: C 54.77; H 3.51; N 15.03; S 8.60. Found: C 54.64; H 3.50; N 15.07; S 8.46.

4.8.5. 4-*Amino*-3-(2-*p*-*chlorophenyl*-2-*oxo*-*ethylsulfanyl*)-6*p*-*methoxyphenyl*-4*H*-[1,2,4]*triazin*-5-*one* **23***k*. Yellow crystals from ethanol, yield 0.31 g (77%), mp 210–212 °C. MS: *m*/*z*=402 (M⁺, 20%), 404 (M+2, 10%). IR: 3421, 3093, 2841, 1674, 1601, 1490, 1305, 1261, 1183, 1089, 819. ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.11 (d, 2H, *J* 8.0), 8.09 (d, 2H, *J* 8.0), 7.66 (d, 2H, *J* 8.0), 7.02 (d, 2H, *J* 8.0), 6.15 (br, 2H, NH₂), 4.84 (s, 2H), 3.81 (s, 3H, CH₃). ¹³C NMR (150 MHz, DMSO*d*₆): δ 192.3, 160.8, 160.4, 152.0, 150.4, 138.5, 134.6, 130.3, 129.8, 128.9, 125.2, 113.6, 55.2, 39.0. Anal. calcd for C₁₈H₁₅ClN₄O₃S: C 53.67; H 3.75; N 13.91; S 7.96. Found: C 53.48; H 3.64; N 13.88; S 7.93.

4.8.6. 4-*Amino*-6-*p*-*methoxyphenyl*-3-(2-*p*-*methoxyphenyl*-2-*oxo*-*ethylsulfanyl*)-4*H*-[*1*,2,4]*triazin*-5-*one* **23***I*. Yellow crystals from ethanol, yield 0.31 g (78%), mp 200–202 °C. MS: *m*/*z*=398 (M⁺, 25%). IR: 3301, 3103, 2840, 1665, 1605, 1577, 1499, 1313, 1262, 1179, 1025, 832. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.11 (d, 2H, *J* 8.8), 8.06 (d, 2H, *J* 8.8), 7.10 (d, 2H, *J* 8.8), 7.03 (d, 2H, *J* 8.8), 6.16 (br, 2H, NH₂), 4.82 (s, 2H, CH₂), 3.87 (s, 3H, CH₃), 3.82 (s, 3H, CH₃). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 191.4, 163.5, 160.8, 160.5, 152.0, 150.3, 130.7, 129.8, 128.7, 125.3, 114.0, 113.6, 55.6, 55.2, 38.5. Anal. calcd for C₁₉H₁₈N₄O₄S: C 57.28; H 4.55; N 14.06; S 8.05. Found: C 57.20; H 4.54; N 13.98; S 8.00.

4.8.7. 4-*Amino*-6-*p*-*chlorophenyl*-3-(2-*oxo*-2-*phenylethylsulfanyl*)-4*H*-[1,2,4]*triazin*-5-*one* **23m**. Yellow crystals from ethanol, yield 0.29 g (78%), mp 185–186 °C. MS: m/z=372 (M⁺, 10%), 374 (M+2, 5%). IR: 3433, 3197, 2996, 1690, 1604, 1495, 1447, 1335, 1255, 1185, 1026, 839. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.32 (d, 2H, *J* 8.4), 8.29 (d, 2H, *J* 8.0), 7.91 (t, 1H, *J* 7.8), 7.79 (t, 2H, *J* 8.0), 7.74 (d, 2H, *J* 8.4), 6.39 (br, 2H, NH₂), 5.08 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 192.7, 162.2, 152.3, 150.5, 139.0, 135.9, 135.6, 132.8, 130.7, 130.2, 128.9, 128.4, 39.1. Anal. calcd for C₁₇H₁₃ClN₄O₂S: C 54.77; H 3.51; N 15.03; S 8.60. Found: C 54.64; H 3.40; N 15.07; S 8.48.

4.8.8. 4-Amino-6-*p*-chlorophenyl-3-(2-*p*-chlorophenyl-2-oxo-ethylsulfanyl)-4H-[1,2,4]-triazin-5-one **23n**. Colorless crystals from ethanol, yield 0.3 g (74%), mp 233–235 °C. MS: m/z=407 (M⁺, 85%), 409 (M+2, 15%), 411 (M+4, 5%). IR: 3434, 3300, 3070, 2850, 1676, 1600, 1497, 1439, 1291, 1213, 1179, 1065, 820, 760. ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.11 (d, 2H *J* 7.8), 8.08 (d, 2H, *J* 8.0), 7.68 (d, 2H *J* 7.8), 7.54 (d, 2H *J* 8.0), 6.18 (br, 2H), 4.86 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 192.7, 162.2, 152.3, 150.5, 139.0, 135.4, 135.1, 132.2, 130.8, 130.4, 129.4, 128.7, 39.3. Anal. calcd for C₁₇H₁₂Cl₂N₄O₂S: C 50.13; H 2.97; N 13.76; S 7.87. Found: C 50.08; H 3.00; N 13.57; S 7.80.

4.8.9. 4-Amino-6-p-chlorophenyl-3-(2-p-methoxyphenyl-2oxo-ethylsulfanyl)-4H-[1,2,4]triazin-5-one **230**. Yellow crystals from ethanol, yield 0.31 g (77%), mp 230–232 °C. MS: m/z=402 (M⁺, 15%), 404 (M+2, 5%). IR: 3434, 3300, 2908, 1676, 1600, 1497, 1422, 1318, 1291, 1179, 1045, 994, 838. ¹H NMR (400 MHz, DMSO-d₆): δ 8.12 (d, 2H, J 8.8), 8.07 (d, 2H, J 8.8), 7.55 (d, 2H, J 8.8), 7.10 (d, 2H, J 8.8), 6.19 (br, 2H, NH₂), 4.84 (s, 2H), 3.88 (s, 3H, CH₃). ¹³C NMR (100 MHz, DMSO-d₆): δ 191.2, 163.9, 162.4, 152.4, 150.4, 135.4, 132.3, 131.2, 130.4, 129.1, 128.8, 114.5, 56.1, 39.1. Anal. calcd for C₁₈H₁₅ClN₄O₃S: C 53.67; H 3.75; N 13.91; S 7.96. Found: C 53.60; H 3.72; N 13.91; S 7.90.

4.9. General procedure for synthesis of compounds 24. General procedure

A mixture of compounds **23** (1 mmol) and *p*-toulenesulfonic acid (30 mg, 0.17 mmol) in ethanol (10 mL) was heated under reflux from 6 to 8 h. The solvent was removed under vacuo and ice water was added (20 mL), the precipitate was collected and crystallized from the proper solvent.

4.9.1. 3,7-Diphenyl-8H-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4-one **24a**. Yellow crystals from ethanol, yield 0.21 g (66%), mp 228–230 °C. MS: m/z=320 (M⁺, 100%). IR: 3055, 2905, 1701, 1594, 1492, 1451, 1331, 1276, 1054, 1008, 973, 752, 691. ¹H NMR (600 MHz, DMSO- d_6): δ 8.10 (d, 2H *J* 8.0), 8.07 (d, 2H, *J* 7.8), 7.65 (t, 1H, *J* 7.8), 7.61 (t, 2H, *J* 7.6), 7.53–7.45 (m, 3H), 4.41 (s, 2H, CH₂). ¹³C NMR (100 MHz, DMSO- d_6): δ 159.7, 154.5, 152.3, 149.2, 133.6, 133.4, 133.0,

130.8, 129.6, 129.1, 128.7, 128.4, 22.3. Anal. calcd for $C_{17}H_{12}N_4OS\colon$ C 63.73; H 3.78; N 17.49; S 10.01. Found: C 63.60; H 3.74; N 17.35; S 9.95.

4.9.2. 3-*p*-*Methoxyphenyl*-7-*phenyl*-8*H*-[1,2,4]*triazino*[3,4-*b*][1,3,4] *thiadiazin*-4-*one* **24b**. Yellow crystals from ethanol, yield 0.25 g (71%), mp 220–222 °C. MS: *m*/*z*=350 (M⁺, 100%). IR: 3057, 2827, 1709, 1604, 1515, 1490, 1444, 1326, 1259, 1170, 1026, 836, 762. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.15 (d, 2H, *J* 8.8), 8.07 (d, 2H, *J* 7.8), 7.65–7.60 (m, 3H), 7.08 (d, 2H, *J* 8.8), 4.40 (s, 2H), 3.85 (s, 3H, OCH₃). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 161.5, 159.7, 153.8, 151.3, 149.3, 133.5, 132.9, 130.7, 129.6, 128.3, 125.9, 114.2, 55.7, 22.4. Anal. calcd for C₁₈H₁₄N₄O₂S: C 61.70; H 4.03; N 15.99; S 9.15. Found: C 61.66; H 4.00; N 15.87; S 8.98.

4.9.3. 7-p-Methoxyphenyl-3-phenyl-8H-[1,2,4]triazino[3,4-b][1,3,4] thiadiazin-4-one **24e**. Yellow crystals from DMF, yield 0.25 g (71%), mp 213–215 °C. MS: m/z=350 (M⁺, 100%). IR: 3074, 2843, 1678, 1607, 1485, 1445, 1345, 1298, 1265, 1178, 1012, 845, 793. ¹H NMR (400 MHz, DMSO-d₆): δ 8.10 (dd, 2H, *J* 7.6, 1.6), 8.06 (d, 2H, *J* 8.6), 7.54–7.51 (m, 3H), 7.17 (d, 2H, *J* 8.6), 4.37 (s, 2H), 3.88 (s, 3H, OCH₃). ¹³C NMR (100 MHz, DMSO-d₆): δ 163.2, 159.2, 154.2, 152.5, 149.2, 133.6, 130.7, 130.4, 129.1, 128.6, 125.3, 115.1, 56.1, 22.0. Anal. calcd for C₁₈H₁₄N₄O₂S: C 61.70; H 4.03; N 15.99; S 9.15. Found: C 61.48; H 4.00; N 15.97; S 9.08.

4.9.4. 7-p-Chlorophenyl-3-phenyl-8H-[1,2,4]triazino[3,4-b][1,3,4] thiadiazin-4-one **24g**. Yellow crystals from DMF, yield 0.27 g (76%), mp 330–333 °C. MS: m/z=354 (M⁺, 25%), 356 (M+2, 5%). IR: 3216, 3057, 2919, 1689, 1598, 1517, 1417, 1350, 1270, 1091, 1002, 784, 758. ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, 2H, *J* 8.8), 8.07 (d, 2H, *J* 7.6), 7.67 (t, 1H, *J* 7.6), 7.63–7.59 (m, 4H), 4.41 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 161.0, 159.2, 153.3, 150.7, 148.7, 132.9, 132.3, 130.2, 129.0, 127.8, 128.3, 125.4, 21.9. Anal. calcd for C₁₇H₁₁ClN₄OS: C 57.55; H 3.12; N 15.79; S 9.04. Found: C 57.50; H 3.07; N 15.54; S 9.00.

4.9.5. 7-*p*-Chlorophenyl-3-*p*-methoxyphenyl-8H-[1,2,4]triazino[3,4b][1,3,4] thiadiazin-4-one **24k**. Yellow crystals from DMF, yield 0.25 g (73%), mp 298–300 °C. MS: m/z=384 (M⁺, 100%), 386 (M+2, 40%). IR: 3070, 2925, 1688, 1603, 1488, 1440, 1300, 1276, 1252, 1165, 1090, 1006, 837, 815. ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.14 (d, 2H, *J* 7.8), 8.07 (d, 2H, *J* 7.8), 7.68 (d, 2H, *J* 7.8), 7.06 (d, 2H *J* 7.8), 4.38 (s, 2H, CH₂), 3.83 (s, 3H, OCH₃). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 1611, 158.1, 153.4, 150.6, 148.7, 137.3, 131.8, 130.3, 129.7, 129.3, 125.4, 113.7, 55.3, 21.8. Anal. calcd for C₁₈H₁₃ClN₄O₂S: C 56.18; H 3.40; N 14.56; S 8.33. Found: C 55.99; H 3.40; N 14.54; S 8.32.

4.9.6. 3,7-*Di*-*p*-*methoxyphenyl*-8*H*-[*1*,2,4]*triazino*[3,4-*b*][1,3,4]*thia*-*diazin*-4-*one* **24***I*. Yellow crystals from DMF, yield 0.29 g (76%), mp 235–236 °C. MS: *m*/*z*=380 (M⁺, 100%). IR: 3046, 3024, 2935, 1704, 1608, 1588, 1487, 1442, 1311, 1262, 1180, 1029, 828. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.15 (d, 2H, *J* 8.8), 8.05 (d, 2H, *J* 8.8), 7.16 (d, 2H, *J* 8.8), 8.07 (d, 2H, *J* 8.8), 4.36 (s, 2H), 3.88 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 163.2, 161.5, 159.2, 153.5, 151.5, 149.3, 130.7, 130.4, 126.0, 125.4, 115.1, 114.1, 56.1, 55.8, 22.1. Anal. calcd for C₁₉H₁₆N₄O₃S: C 59.99; H 4.24; N 14.73; S 8.43. Found: C 59.95; H 4.28; N 14.77; S 8.42.

4.9.7. 3-p-Chlorophenyl-7-phenyl-8H-[1,2,4]triazino[3,4-b][1,3,4] thiadiazin-4-one **24m**. Yellow crystals from DMF, yield 0.25 g (70%), mp 270–273 °C. MS: m/z=354 (M⁺, 100%), 356 (M+2, 5%). IR: 3062, 2919, 1705, 1592, 1488, 1445, 1323, 1298, 1091, 1009, 836, 758. ¹H NMR (400 MHz, DMSO-d₆): δ 8.16 (d, 2H, J 8.6), 8.07 (d, 2H, J 8.6), 7.60 (t, 1H, J 7.8), 7.57–7.53 (m, 4H), 4.41 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆): δ 159.8, 153.4, 152.7, 149.2, 135.6, 133.3, 133.0, 132.4,

130.8, 129.6, 128.8, 128.4, 22.3. Anal. calcd for C₁₇H₁₁ClN₄OS: C 57.55; H 3.12; N 15.79; S 9.04. Found: C 57.35; H 3.12; N 15.87; S 8.93.

4.9.8. 3,7-*Di*-*p*-chlorophenyl-8*H*-[1,2,4]triazino[3,4-*b*][1,3,4]thiadiazin-4-one **24n**. Yellow crystals from DMF/EtOH, yield 0.27 g (69%), mp 288–290 °C. MS: *m*/z=388 (M⁺, 100%), 390 (M+2, 75%), 392 (M+4, 5%). IR: 3075, 3011, 1693, 1588, 1480, 1428, 1396, 1285, 1091, 1007, 839, 809. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.15 (d, 2H, *J* 7.6 Hz), 8.08 (d, 2H, *J* 7.6 Hz), 7.70 (d, 2H, *J* 7.8 Hz), 7.59 (d, 2H, *J* 7.6), 4.39 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 158.2, 152.9, 151.9, 148.6, 137.4, 135.2, 131.9, 131.7, 130.3, 129.7, 129.3, 128.3, 21.8. Anal. calcd for C₁₇H₁₀Cl₂N₄OS: C 52.46; H 2.59; N 14.39; S 8.24. Found: C 52.28; H 2.61; N 14.17; S 8.17.

4.9.9. 3-*p*-Chlorophenyl-7-*p*-methoxyphenyl-8*H*-[1,2,4]triazino[3,4b][1,3,4]thiadiazin-4-one **240**. Yellow crystals from ethanol, yield 0.28 g (73%), mp 226–228 °C. MS: m/z=384 (M⁺, 100%), 386 (M+2, 6%). IR: 3299, 3206, 2975, 1692, 1510, 1488, 1439, 1319, 1254, 1186, 1012, 838. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, 2H, *J* 8.8), 7.99 (d, 2H, *J* 7.6), 7.48 (d, 2H, *J* 7.8), 7.05 (d, 2H, *J* 8.8), 3.97 (s, 2H, CH₂), 3.93 (s, 3H, OCH₃). ¹³C NMR (100 MHz, DMSO-d₆): δ 163.5, 157.3, 153.5, 150.9, 149.1, 137.1, 131.2, 130.4, 129.9, 128.6, 124.7, 114.7, 55.7, 22.5. Anal. calcd for C₁₈H₁₃ClN₄O₂S: C 56.18; H 3.40; N 14.56, S 8.33. Found: C 56.15; H 3.40; N 14.50; S 8.32.

4.10. General procedure for synthesis of compounds 25

A mixture of compounds **24** (1 mmol) and acetic anhydride (10 mL) was heated under reflux for 2 h, and then ice water (20 mL) was added to the reaction mixture. The precipitate was collected and recrystallized from the stated solvent.

4.10.1. 1-Acetyl-7-p-methoxyphenyl-3-phenyl-1H-pyrazolo[5,1-c] [1,2,4]triazin-4-one **25e**. Gray needles from ethanol/acetone, yield 0.30 g (83%), mp 232–234 °C. MS: $m/z=360 (M^+, 80\%)$. IR: 3423, 2969, 1749, 1709, 1587, 1526, 1303, 1254, 1170, 928, 788. ¹H NMR (400 MHz, DMSO- d_6): δ 8.07 (d, 2H, J 7.8), 8.03 (d, 2H, J 8.4), 7.60–7.56 (m, 3H), 7.41 (s, 1H), 7.08 (d, 2H, J 8.4), 3.84 (s, 3H), 2.72 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6): δ 170.6, 160.7, 155.6, 147.7, 139.5, 139.0, 132.0, 130.2, 129.1, 128.3, 128.2, 123.4, 114.4, 92.1, 55.3, 22.0. Anal. calcd for C₂₀H₁₆N₄O₃: C 66.66; H 4.48; N 15.55. Found: C 66.50; H 4.41; N 15.50.

4.10.2. 1-Acetyl-7-p-chlorophenyl-3-phenyl-1H-pyrazolo[5,1-c] [1,2,4]triazin-4-one **25g**. Gray needles from ethanol/acetone, yield 0.29 g (80%), mp 243–245 °C. MS: m/z=364 (M⁺, 80%), 366 (M+2, 5%). IR: 3156, 3060, 2923, 1717, 1630, 1559, 1433, 1302, 1264, 1171, 948, 815. ¹H NMR (400 MHz, DMSO-d₆): δ 8.14 (d, 2H, *J* 8.0), 8.08 (d, 2H, *J* 7.8), 7.61–7.54 (m, 5H), 7.52 (s, 1H), 2.73 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆): δ 170.7, 154.5, 147.9, 139.8, 139.2, 134.7, 131.9, 130.3, 129.9, 129.2 (2C), 128.5, 128.4, 92.7, 22.0. Anal. calcd for C₁₉H₁₃ClN₄O₂: C 62.56; H 3.59; N 15.36. Found: C 62.50; H 3.41; N 15.30.

4.10.3. 1-Acetyl-3,7-di-p-chlorophenyl-1H-pyrazolo[5,1-c][1,2,4]triazin-4-one **25n**. Yellow needles from ethanol/acetone, yield 0.27 g (75%), mp 232–234 °C. MS: m/z=398 (M⁺, 80%), 400 (M+2, 15%), 402 (M+4, 5%). IR: 3423, 2969, 1749, 1709, 1587, 1526, 1303, 1254, 1170, 928, 788. ¹H NMR (400 MHz, DMSO-d₆): δ 8.15–8.10 (m, 4H), 7.65 (d, 2H, *J* 8.4), 7.59 (d, 2H, *J* 8.4), 7.51 (s, 1H), 2.74 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆): δ 170.6, 154.6, 147.8, 139.7, 138.0, 135.2, 134.7, 130.9, 130.7, 129.8, 129.2, 128.4, 92.7, 55.3, 22.0. Anal. calcd for C₁₉H₁₂Cl₂N₄O₂: C 57.16; H 3.03; N 14.03. Found: C 57.10; H 3.01; N 14.00.

4.10.4. 3-Benzoyl-2-phenyl-4H-pyrazolo[5,1-b]quinazolin-9-one **26a**. Yellow crystals from EtOH, yield 0.06 g (16%, using general procedure A, from **12**), yield 0.07 (20%, using general procedure B, from **9** and **16**), mp 233–234 °C. R_f =0.3 (petroleum ether/EtOAc 2:1). MS: m/z=365 (M⁺). IR: 3434, 2984, 2924, 1734, 1684, 1551, 1470, 1310, 1177, 769, 691. ¹H NMR (400 MHz, CDCl₃): δ 10.83 (s, 1H), 8.54 (d, 1H, *J* 8.0), 7.81 (dt, 1H, *J* 8.4, 1.6), 7.49–7.43 (m, 3H), 7.38 (dd, 2H, *J* 7.2, 2.0), 7.30 (t, 1H, *J* 8.0, 1.2), 7.21 (dt, 1H, *J* 7.6, 1.2), 7.12–7.08 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 156.7, 155.3, 147.2, 138.12, 138.06, 135.4, 131.7, 131.5, 129.8, 129.1, 129.0, 128.8, 127.8, 127.7, 124.2, 116.5, 115.1, 102.3. HRMS=365.1156 (C₂₃H₁₅N₃O₂ requires 365.1158).

4.10.5. 3-*Ethoxycarbonyl-2-phenyl-4H-pyrazolo*[5,1-*b*]*quinazolin-9-one* **26b**. Colorless crystals, yield 21% (using general procedure B, from **9** and **14**), mp 230–231 °C. MS: *m*/*z*=333. IR: 3429, 3269, 1708, 1682, 1625, 1572, 1498, 1444, 1425, 1305, 1174, 1047, 762, 698. ¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H, NH), 8.51 (dd, 1H, *J* 8.0, 0.4), 7.86–7.84 (m, 2H), 7.79 (dt, 1H, *J* 8.4, 1.6), 7.47–7.38 (m, 5H), 4.33 (q, 2H, *J* 7.2), 1.29 (t, 3H, *J* 7.2). ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 156.0, 155.1, 146.4, 137.8, 135.1, 131.2, 129.9, 129.3, 128.9, 127.4, 123.6, 115.9, 114.1, 93.0, 60.6, 13.9. HRMS=333.1106 (C₁₉H₁₅N₃O₃ requires 333.1107).

4.10.6. 2-Phenyl-4H-pyrazolo[5,1-b]quinazolin-9-one **27**. Colorless crystals from EtOH, yield 0.08 g (31%, using general procedure A, from **12**), mp 293–295 °C (lit.² mp 293 °C).

Acknowledgements

The support of the University of Kuwait received through research grant no. SC04/05 and the facilities of ANALAB and SAF (grant nos. GS01/01, GS01/03, GS03/01) are gratefully acknowledged.

Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.tet.2011.06.034. These data include MOL files and InChIKeys of the most important compounds described in this article.

References and notes

- (a) Ibrahim, Y. A.; Al-Awadi, N. A.; Ibrahim, M. R. *Tetrahedron* **2004**, *60*, 9121–9130; (b) Al-Awadi, H.; Ibrahim, M. R.; Al-Awadi, N. A.; Ibrahim, Y. A. *Tetrahedron* **2007**, *63*, 12948–12953.
- 2. Ibrahim, Y. A.; Al-Awadi, N. A.; John, E. Tetrahedron 2008, 64, 10365-10374.
- (a) Marco-Contelles, J.; Pérez-Mayoral, E.; Ballesteros, P. In *Bicyclic* 5–5 Systems with One Bridgehead (Ring Junction) Nitrogen Atom: Three Extra Heteroatoms 2:1; Katritzky, A. R., Christopher, A., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Comprehensive Heterocyclic Chemistry III; Elsevier Academic: 2008; Vol. 11, pp 199–305; (b) Regan, A. C. In *Bicyclic* 5–6 Systems with One Bridgehead (Ring Junction) Nitrogen Atom: Two Extra Heteroatoms 1:1; Katritzky, A. R., Christopher, A., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Comprehensive Heterocyclic Chemistry III; Elsevier Academic: 2008; Vol. 11, pp 551–587; (c) Hajós, G.; Riedl, Z. In *Bicyclic* 5–6 Systems with One Bridgehead (Ring Junction) Nitrogen Atom: Three Extra Heteroatoms 1:2; Katritzky, A. R., Christopher, A., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Comprehensive Heterocyclic Chemistry III; Elsevier Academic: 2008; Vol. 11, pp 765–817.
- (a) Schantl, J. G. In Bicyclic 5–5 Systems with One Ring Junction Nitrogen Atom: Three Extra Heteroatoms 2:1; Katritzky, A. R., Rees, C. W., Scriven, F. V., Eds.; Comprehensive Heterocyclic Chemistry II; Pergamon: London, 1996; Vol. 8, pp 123–190; (b) Sliskovic, D. R. In Bicyclic 5–6 Systems with One Ring Junction Nitrogen Atom: Two Extra Heteroatoms 1:1; Katritzky, A. R., Rees, C. W., Scriven, F. V., Eds.; Comprehensive Heterocyclic Chemistry II; Pergamon: London, 1996; Vol. 8, pp 345–365; (c) Hajós, G. In Bicyclic 5–6 Systems with One Ring Junction

Nitrogen Atom: Three Extra Heteroatoms 1:2; Katritzky, A. R., Rees, C. W., Scriven, F. V., Eds.; Comprehensive Heterocyclic Chemistry II; Pergamon: London, 1996; Vol. 8, pp 445–464.

- (a) Ibrahim, Y. A.; Elwahy, A. H. M.; El-Fiky, A. E. M. Heteroat. Chem. 1994, 5, 321–325; (b) Molina, P.; Alajarín, M.; de Vega, M. J. P.; de la Concepción Foces-Foces, M.; Cano, F. H.; Claramunt, R. M.; Elguero, J. J. Chem. Soc., Perkin Trans. 1 1987, 1853–1887.
- (a) Kolodina, A. A.; Lesin, A. V. *Russ. J. Org. Chem.* **2009**, *45*, 139–145 and references cited therein; (b) Gaponenko, N. I.; Kolodina, A. A.; Lesin, A. V.; Kurbatov, S. V.; Starikova, Z. A.; Nelyubina, Y. V. *Russ. Chem. Bull. Int. Ed.* **2010**, *59*, 838–844.
- Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 826663 (4a), CCDC 826668 (8a), CCDC 826669 (12). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 (0) 1223 336033 or e-mail: deposit@ccdc.cam.ac.Uk).
- El-Barbary, A. A.; El-badawi, M. A.; Loksha, Y. M. J. Heterocycl. Chem. 2001, 38, 711–716.
- Al-Awadi, N. A.; Bigley, D. B.; Gabbot, R. E. J. Chem. Soc., Perkin Trans. 2 1978, 1223–1224; Al-Awadi, N. A.; Bigley, D. B. J. Chem. Soc., Perkin Trans. 2 1979, 497–500; Al-Awadi, N. A.; Bigley, D. B. J. Chem. Soc., Perkin Trans. 2 1982, 773–775 and references cited therein.
- Badawy, M. A.; Abdel-Hady, S. A. L.; Eid, M. M.; Ibrahim, Y. A. Chem. Ber. 1984, 117, 1083–1088.
- 11. Pravst, I.; Zupan, M.; Stavber, S. Green Chem. 2006, 8, 1001-1005.
- 12. Dornow, A.; Menzel, H.; Marx, P. Chem. Ber. **1964**, 97, 2173–2178.
- Holla, B. S.; Gonsalves, R.; SaroJini, B. K. *Indian J. Chem. (B)* **1997**, 36B, 943–946.
 Singh, G.; Singh, P. A.; Sen, A. K.; Singh, K.; Dubey, S. N.; Handa, R. N.; Choi, J.
- Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2002, 32, 171–187.
 Bazavova, I. M.; Britsun, V. N.; Esipenko, A. N.; Lozinskii, M. O. Chem. Heterocycl. Compd. (N. Y., NY, U. S.) (Translation of Khimiya Geterotsiklicheskikh Soedinenii) 2003, 39, 809–812; Chem. Abstr. 2004, 140, 423651.